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Abstract 

Deep Neural Networks (DNNs) categorize object images 
with extremely high levels of accuracy, with performance 
that is able to match, or even surpass, humans. In natural 
images, category is often confounded with shape 
information, therefore it is possible that DNNs rely 
heavily upon visual shape, rather than semantics, in 
order to discriminate between categories. Using two 
datasets that explicitly dissociate shape from category, 
we quantify the extent to which DNNs represent semantic 
information independently from shape. One dataset 
defines shape as a high-level property, namely low 
versus high aspect ratio. The second dataset defines 
shape as 9 different types that best represent low-level, 
retinotopic shape. We discover that DNNs are able to 
encode semantic information independently from low-
level shape, peaking at the final fully connected layer in 
multiple DNN architectures. The final layer of multiple 
DNNs represents high-level shape to the same level of 
correlation as category. This work suggests that DNNs 
are able to bridge the semantic gap, by representing 
category independently from low-level shape.   
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Introduction 

In recent years, the performance of Deep Neural 
Networks (DNNs) has improved significantly, such that 
they are able to meet (Krizhevsky, Sutskever, & Hinton, 
2012; Simonyan & Zisserman, 2015; Szegedy, Liu, Jia, 
Sermanet, Reed, Anguelov, Erhan, Vanhoucke & 
Rabinovich, 2015), and even surpass human 
performance in classifying objects. There are 
increasing comparisons between these artificial 
networks and their biological counterparts, building up 
a wealth of evidence for their use as a benchmark 
model of visual object recognition (Kietzmann, McClure, 
& Kriegeskorte, 2017). While recent performance of 
DNNs for object classification tasks is impressive, it is 
unclear to what extent DNNs are representing the true 
semantics of categories. Deriving high-level semantic 
meaning from low-level feature descriptions is 
commonly referred to as the “semantic gap” in computer 
vision literature (Markowska-Kaczmar & Kwaśnicka, 

2018). To establish the level at which DNNs bridge the 
semantic gap and extract meaningful information from 
images, they require testing with images that reduce 
any possible reliance upon low-level features that could 
be exploited to improve performance. Shape and 
category information significantly interact in natural 
images (Bracci & Op de Beeck, 2016). Given that these 
networks represent shape information (Kubilius, Bracci, 
& Op de Beeck, 2016), it is possible that these 
architectures are exploiting shape features for 
classification, without learning any underlying category 
semantics. In this paper we test network performance 
on carefully designed images that minimize potential 
dependencies between category and influencing 
features.  

Methods 

Using Representational Similarity Analysis (RSA) 
(Kriegeskorte, Mur, & Bandettini, 2008), we test object 
shape and category information in each layer of multiple 
DNNs. We analyze 4 different deep networks: 
GoogLeNet, VGG-16, VGG-19 and CaffeNet.  

 

DNN architectures 

We take four leading DNN architectures: GoogLeNet 
(Szegedy, et al., 2015), CaffeNet, which is an 
implementation of AlexNet as described in Krizhevsky, 
Sutskever, & Hinton (2012), and VGG-16 and VGG-19 
(Simonyan & Zisserman, 2015). CaffeNet, VGG-16 and 
VGG-19 all have layers stacked in a single column with 
increasing depth of 8, 16 and 19 layers respectively. 
These three architectures have chained convolutional 
operations followed by max pooling. GoogLeNet 
diverges from this standard architectural arrangement 
with the addition of miniature networks embedded 
within the global architecture, referred to as "inception 
modules", which are multi-sized convolutional 
operations configured in parallel. GoogLeNet has a 
maximum depth of 22 parameterized layers. 

Stimulus Sets 

We use two stimulus sets that are designed to 
dissociate shape from category information. Both 
stimulus sets are greyscale images of objects on a 



white background, centered at the origin and presented 
at a normal viewing angle (see Figure 1). Stimulus Set 
A (top row) contains 32 unique images, divided into 2 
equal-sized categories (animal vs non-animal) and 2 
equal-sized shapes (low and high aspect ratio). 
Stimulus Set B (bottom row) contains 54 images divided 
into 6 object categories (minerals, animals, fruit/veg, 
music, sport and tools) and 9 shape types. All stimuli 
are balanced across common shape information 
(circled in dashed grey). Each category division is 
highlighted by a distinct color. Details on Set B are 
found in (Bracci & Op de Beeck, 2016). 

 

 

 

 
 

Figure 1: Stimulus Sets. Top (A): 32 stimuli in 2 
categories (animal and non-animal), Bottom (B) 54 

stimuli in 6 categories (animals, minerals, 
fruit/vegetables, music, sports equipment, tools).  

 

Shape and Category Models 

Shape and category models are represented as binary 
value Representational Dissimilarity Matrices or RDMs, 
where 0 indicates no dissimilarity (pairs of stimuli are 
within the same category or shape type) and 1 indicates 
full dissimilarity (pairs of stimuli are in different 
categories or shape types). See Figure 2 for a visual 
representation. In Set A, object images are numbered 
sequentially within each cluster of gerbils, insects, tools 
and vegetables. In Set B, object images are numbered 
in order from top to bottom, left to right in Figure 1.  

 

 

 

 

 
 
 
 
 
 
 

Figure 2: RDMs of shape (top row) and category 
(bottom row) models for Set A (left) and B (right). 

Results 

We measure the RSA between shape and category 
models for every layer of each DNN. Each plot also 
contains a significance threshold, which is twice the 
standard deviation of the correlation between the DSM 
of each DNN layer and 10,000 randomized category 
conceptual models. Values above the significance 
threshold fall within p < 0.05.  

 

 

 

Figure 3: CaffeNet correlations with shape (orange) 
and category (blue) for Set A (top) and B (bottom). 
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Figure 4: VGG-16 correlations with shape (orange) 
and category (blue) for Set A (top) and B (bottom). 

 
In CaffeNet (Fig 3), category information remains low 

in the first few layers before increasing to above 
significance in later layers, reaching a maximum at the 
final fully-connected layer for both datasets. In Set B, 
category information overtakes shape, which does not 
occur in Set A. VGG-16 (Fig 4) and VGG-19 (Fig 5) 
illustrate similar trends in performance. In both 
networks, category overtakes shape for Set B at the 
penultimate layer, which does not occur in Set A, where 
category meets the level of shape correlation at the final 
layer. In VGG-16, category information does not reach 
significance until layer 14 for Set A, and layer 13 for Set 
B. In VGG-19, category correlations reach significance 
at layer 16 for both Sets A and B.  

In GoogLeNet (Fig 6), shape exceeds category 
correlations for all layers in Set A, and most layers in 
Set B. For both datasets, category information peaks at 
the final layer, which exceeds shape correlations for Set 
B but not A. Viewing layer by layer transformations, 
there are 3 occurrences across both datasets where 
there is a dip in shape and a rise in category information 
of greater than 5%, occurring at layers 21, 39 and 51. 
These layers all perform pool projection – suggesting 
that this type of operation boosts category information 
while simultaneously reducing shape. 

 

 

 

Figure 5: VGG-19 correlations with shape (orange) 
and category (blue) for Set A (top) and B (bottom). 

Conclusions 

We extend upon work demonstrating that DNNs are 
able to encode category-orthogonal properties of 
objects, providing evidence that these artificial networks 
learn category semantics independently from low-level 
visual shape information. We test four leading DNN 
architectures using two stimulus sets that are carefully 
designed to orthogonalize shape from category 
information. Across all DNN architectures tested, shape 
information peaks prior to category. Category 
information reaches a maximum at the final layer of all 
DNNs. In single column architectures (CaffeNet, VGG-
16 and VGG-19), category information rises above 
significance in the final three layers of these deep 
networks. In a deep parallelized architecture 
(GoogLeNet), there are rises and falls above and below 
significance for category information as the layers are 
traversed, with the largest correlation in category 
information occurring at the final layer. Our results 
demonstrate that DNNs are able to significantly 
represent category semantics in the final layers across 
multiple DNNs, suggesting they are able to bridge the 
semantic gap by distinguishing objects beyond 
rudimentary shape properties.
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Figure 6: GoogLeNet correlations with shape (orange) and category (blue) for Set A (top) and B (bottom). 
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