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Abstract
The primate visual system constructs intermediate shape
representations using something akin to a radial modula-
tion function (Pasupathy & Connor, 2001, 2002). However,
less is known about whether sparse representations de-
rived from radial modulation functions are useful in per-
forming higher level tasks, such as object recognition.
The current study investigated whether several shape-
encoding schemes based on radial modulation functions
can be used by neural networks to learn the identity
of closed-contour shapes degraded by various amounts
of blur or curvature noise. We measured performance
of neural networks on a shape classification task with
10 sets of 10 unique shape classes, each consisting of
10,000 samples. When the shapes were not degraded,
classification accuracy for representations based upon
the radial position of, or angularity between, either pos-
itive or negative curvature extrema was high. When the
shapes were blurred, classification accuracy was signifi-
cantly lower for representations based on the angles be-
tween curvature extrema. However, adding frequency
noise reduced classification accuracy by similar amounts
across sparse representation types. Sparse representa-
tions also led to faster training of neural networks com-
pared to richer representations. We conclude that sparse
shape vectors derived from radial functions can support
shape identification, and faster training of networks for
shape identity.
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Introduction
The human visual system is highly sensitive to changes in cur-
vature along the outline contour of objects (Wilkinson, Wilson,
& Habak, 1998; Hess, Wang, & Dakin, 1999; Jeffrey, Wang,
& Birch, 2002). Such heightened sensitivity to curvature has
been attributed to the polar-based coding scheme used by pri-
mate visual cortex to encode shape (Poirier & Wilson, 2006).
Physiological data on response properties of V4 neurons pro-
vide support for a polar-based coding scheme, in which V4
neurons respond to curvature extrema relative to the center of
a visual stimulus (Pasupathy & Connor, 2001, 2002). From
this population code, a radial modulation function mapping
changes in curvature across polar angle can be extracted to
represent the outline of an object (Pasupathy & Connor, 2001).

Several investigators have proposed that intermediate vi-
sual areas represent the outline shape of objects using sparse
coding schemes based either on the radial position of curva-
ture extrema (Pasupathy & Connor, 2001, 2002; Poirier & Wil-
son, 2006; Carlson, Rasquinha, Zhang, & Connor, 2011), or
the angular separation between curvature extrema (Cadieu et
al., 2007; Dickinson, Bell, & Badcock, 2013; Schmidtmann,
Jennings, & Kingdom, 2015). Sparse coding of shape bound-
ary is important to understand, as sparser neural responses
are computationally efficient (Carlson et al., 2011), require
less metabolic energy to process (Levy & Baxter, 1996), and
can improve storage capacity (Treves & Rolls, 1991). Most
models of shape encoding are concerned with accurate shape
reconstruction of stimuli from neural responses (Pasupathy &
Connor, 2001, 2002; Carlson et al., 2011), rather than ex-
amining whether these codes can be used to classify shapes
into categories based on contour boundary. Certainly, issues
arising from signal degradation and additions of noise could
pose problems in using such sparse coding strategies in link-
ing form with identity.

Therefore, to test whether sparse shape vectors can be
used to learn to identify shapes, we trained an MLP neural net-
work on different sets of custom generated shapes, either with
or without signal degradation, and compared performance of
the neural network across different representation types.

Methods
Sets of shapes were constructed using Radial Frequency (RF)
contours (see Wilkinson et al., 1998, for original equation) de-
fined by:

r(θ) = r̄(1+A1sin(ω1θ+φ1)+A2sin(ω2θ+φ2)+

A3sin(ω3θ+φ3))
(1)

where θ is the polar angle, r̄ is the mean radius of the shape,
and the modulation amplitude, radial frequency, and phase of
the two RF components are represented by Ai, ωi, and φi,
respectively. To avoid having a contour cross the center of
the pattern, the total modulation amplitude summed across
all three RF components (i.e., A1 +A2 +A3) never exceeded
0.99.

In total, 10 sets of shapes, each comprised of 10 unique
shape families, were generated (see Figure 1). A shape family
was generated by choosing a unique three-dimensional vec-
tor of radial frequencies (~ω with components between 0 - 9



Figure 1: Example of one set of shapes used in the current
study. Each shape is one sample from a different shape fam-
ily. Each set consisted of 10 shape families, and each shape
family consisted of 10,000 samples. A total of 10 sets of shape
families were generated.

cycles/2π) that was never repeated within the shape set. How-
ever, we allowed for r̄, amplitudes (~A)), and relative phi (~φ)) to
vary across samples within a family: each shape family was
comprised of 10,000 samples. Ten shape classes were gen-
erated per set using these constraints, for a total of 1,000,000
shapes.

The various shape representations (vectors) used to train
MLP networks are shown in Figure 2. Two different sparse

Figure 2: Top-left : Radial modulation function of a single
shape plotted in polar coordinates. Top-right : Plot of radial
modulation as a function of polar angle for shape sample
shown on left. Bottom-left : Visualization of sparse represen-
tations based on polar angle of curvature extrema from radial
modulation displayed above. Bottom-right : Visualization of
sparse representations of angular separation between curva-
ture extrema. Note that values along abscissa do not corre-
spond to same values.

Figure 3: Left : Polar plot of unaltered radial modulation
function (black) and the same representation after Gaussian
smoothing (σ = 5) has been applied to the function (green).
Right : Radial modulation of unaltered and smoothed repre-
sentation as a function of the polar angle in degrees.

shape representations were derived from radial modulation
functions for each shape (shown in black), one representa-
tion was based on the location of curvature extrema (shown
in red), and the other was based on the angular separation
between these extrema (shown in blue).

Experiment 1: Signal degradation
To simulate signal degradation and general smoothing that
may arise from visual processing, we applied various degrees
of Gaussian blurring to sparse radial modulation representa-
tions, and then recomputed all sparse representations using
these new, blurred stimuli (see Figure 3).

Experiment 2: Curvature noise
To examine how the addition of curvature noise affects perfor-
mance across shape representations, we added an irrelevant,
fourth RF component to each original shape vector. The fre-
quency of this component was either absent, low (ω4: 1-5),
medium (ω4: 6-11), or high (ω4: 12-16). Because the sum
of amplitudes across RF components was restricted to val-
ues less or equal to 0.99, the amplitude of this fourth compo-
nent (A4) was allowed to take any value between 0 and (0.99 -
(A1 +A2 +A3)). The phase was set to a random value across
samples. An illustration of each frequency noise in different
ranges is displayed in Figure 4.

ML network architecture and training
A 3-layer MLP network was trained and tested on shape
representations (Figure 5). This neural network architecture
was chosen because preliminary simulations demonstrated
that this network yielded best classification performance on
non-altered shape representations compared to deeper MLP
networks (i.e.> 3 layers) and CNNs of varying depth (3-6).
Dropout was also present between dense layers to promote
regularization, and was set to a value of 0.3.

Results
Experiment 1: Signal smoothing
Results from Experiment 1 are shown in Figure 6, which plots
classification accuracy for sparse shape vectors plotted as a



Figure 4: Plots demonstrating RF noise conditions where the
noise RF component added to original shape could be low,
medium, or high frequency.

function of blur. Classification accuracy was generally high
across all representations tested. However, performance was
better, and more robust to signal smoothing, for sparse vectors
encoding curvature extrema as a function of polar angle com-
pared to vectors encoding angular separation between cur-
vature extrema. Classification based on sparser representa-
tions of shape outlines (i.e, based on only max or min curva-
ture extrema) were also more robust to signal smoothing as
compared to less efficient codes. However, this result was ob-
served only when curvature extrema were coded as a function
of polar angle, and the exact opposite relation was observed
for codes based on angularity between curvature extrema.

Experiment 2: Curvature noise

Results from Experiment 2 are shown in Figure 7. Classifica-
tion accuracy was highest for networks trained and tested with
noise-absent shape representations. Furthermore, the addi-
tion of curvature noise had no noticeable effect on the classifi-
cation performance for networks trained and tested with non-

Figure 5: Schematic of MLP architecture used. Dropout lay-
ers were omitted from schematic for clarity, but were present
between all dense layers of the network.

Figure 6: Left : Classification accuracy plotted as a function of
level of signal blurring (σ) for representations based on encod-
ing of curvature extrema at different polar angles, with colour
indicating what curvature extrema were used when generat-
ing representations. Right : Abscissa and ordinate are same
as in left figure, except plot shows performance for networks
trained and tested on shape vectors based on angular sepa-
ration between extrema.

sparse radial modulation functions, regardless of the noise fre-
quency.

In contrast, the frequency of the noise RF component had
a large effect on classification performance of networks that
were trained and tested with sparse representations based
solely on curvature extrema. Specifically, high frequency RF
noise components caused large declines in classification ac-
curacy compared to noise RF components of relatively lower
frequency. Furthermore, performance was better for shape

Figure 7: Classification performance of MLP networks trained
and tested across different types of shape representations.
The colour of each point indicates the level of frequency noise
added to original vectors.



representations that coded the polar angles of curvature ex-
trema rather than the angles between extrema. Sparsity of
codes within a representation type (i.e., curvature by polar an-
gle), had little effect over classification accuracy.

Discussion
These simulations demonstrate that extremely sparse shape
representations can be used to classify outline shapes com-
posed of three radial frequencies, but that classification accu-
racy can be affected, sometimes drastically, by signal blur and
RF noise.

A surprising result was observed in Experiment 2, as classi-
fication accuracy declined dramatically when irrelevant higher
frequencies, but not lower frequencies, were added to radial
representations of shape identity. This result stands in con-
trast to psychophysical data that suggests the human visual
system represents radial frequencies between approximately
3 - 10 cycles/2π (Habak, Wilkinson, Zakher, & Wilson, 2004;
Bell, Badcock, Wilson, & Wilkinson, 2007; Bell & Badcock,
2009; Bell, Wilkinson, Wilson, Loffler, & Badcock, 2009), and
that human observers are most sensitive to noise occurring at
lower spatial frequencies (Bell et al., 2007; Bell & Badcock,
2009). Furthermore, these results demonstrate that the types
of noise human observers are sensitive to when discriminating
shapes differs dramatically from the types of noise which most
affects performance of neural networks using similar shape
representations. Perhaps, higher visual areas are applying
low-pass filters to attenuate the effect high frequency noise
has in using sparse representation to code for shape identity.
Although our results are consistent with this idea, more direct
tests aimed at evaluating this hypothesis are needed.

In summary, our results support neurophysiological evi-
dence suggesting sparse coding of shape boundaries based
on curvature extrema is a viable transformation that still re-
tains useful information that can be used to classify shapes
despite its sparseness. Given our findings, we conclude
sparse vectors can be used as a viable coding strategy in link-
ing form with identity, although it is unclear how these results
may extend under more complex circumstances.
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