Value-conflict and volatility influence distinct decision-making processes
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Abstract

Humans are capable of quickly adapting their deci-
sions using multiple sources of environmental uncer-
tainty. Drawing inspiration from the underlying neural
substrates of adaptive decision-making, we propose a
dynamic cognitive model in which feedback signals re-
garding the relative state-action value (i.e., conflict in the
probability of reward between two choices) and the relia-
bility of reward contingencies (i.e., likelihood that target
value has changed) uniquely target the rate of evidence
accumulation (v) and the amount of evidence needed to
gate a decision (a), respectively. We experimentally vet-
ted this model using a variant of the two-armed bandit
task (N = 20), in which the level of value-conflict and the
volatility of reward contingencies were independently ma-
nipulated between conditions. Model simulations and be-
havioral responses were fit to a hierarchical drift diffusion
model and both showed similar patterns of changes in v
and a across conditions, providing prima facie evidence
that distinct estimates of environmental uncertainty tar-
get distinct components of decision processes.
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Introduction

In natural contexts, successful behavior in a dynamic envi-
ronment requires making fast, accurate decisions and updat-
ing those decisions based on an internal model of the state
of the environment. Drawing inspiration from the computa-
tional architecture of cortico-basal ganglia-thalamic circuitry
(Dunovan & Verstynen, 2016), we propose a cognitive model
that 1) updates the rate of evidence accumulation using es-
timates of value differences between possible actions and
2) updates the threshold of decision processes using esti-
mates of change point probability. Using an adaptive-decision-
making algorithm that unifies drift diffusion models and rein-
forcement learning (Dunovan & Verstynen, 2017; Pedersen,
Frank, & Biele, 2017), we modeled decision processes un-
der different conditions of value-conflict, or the proximity of
the probability of reward between two choices, and feedback
volatility, or the instability of action-value associations. We

hypothesize that value-conflict will decrease the rate of evi-
dence accumulation and that volatility in action-value associ-
ations will increase the amount of evidence needed to make
a decision. The predictions of this model are vetted against
behavioral observations from a sample of human participants
(N =20).

Methods
Cognitive Model

An adaptive variant of the drift diffusion model was used to
simulate the results of our hypothetical learning model (see
(Dunovan & Verstynen, 2017)). Here we propose that the drift
rate (v) and the decision threshold (a) are modulated on a trial-
by-trial basis according to two estimates of uncertainty from
an ideal observer.

Updating action-values To model how learners update
action-values, we calculate an estimate of how often the same
action will give a different reward. We call this learning signal
change point probability (©2). The change point probability will
be close to 1 as the probability of a sample coming from a uni-
form distribution, relative to a Gaussian distribution, increases:
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H refers to the hazard rate, or the global probability of a
change point:
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Model confidence [¢] is a function of the change point prob-
ability [Q2] and the variance of the generative distribution [Gﬁ],
both of which form an estimate of relative uncertainty (RU):
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Thus [0] is determined as:

041 =1-RU (4)



Relative action-value Along with estimates of the stability
of action-value contingencies, feedback signals also drive the
belief in the reward of an action. We call this signal B, and it
is learned separately for each action target. Given that ¢ = the
chosen target and u = the unchosen target, the belief in the
mean of the distribution of reward differences on the next trial
is calculated as:

Biy1c=B+ oS (5)

The unchosen target value decays to the pooled expected
value of both targets, E(r):
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The signed belief in the reward difference between targets
is calculated as the difference in belief for targets 0 and 1:

B, =B:i1 —Bip (8)

Update rules The learning rate of the model [a] is deter-
mined by the change point probability [2] and the model con-
fidence [¢]. Here, the learning rate will be high if either 1)
a change in the mean of the distribution of the difference in
expected values is likely [Q is high] or 2) the estimate of the
mean is highly imprecise [Gﬁ is high]:

o = Q4 (1-Q)(1—0,) 9)

The prediction error, 9, is the difference between the model
belief and the reward difference observed:

61 =r—B . (10)

And the estimated variance, (52, is calculated as:
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We propose that the belief in the relative reward for the two
choices, B, updates the drift rate, v, or the speed of evidence
accumulation:

Vel =By Ba, + i (12)

and that the change point probability, Q affects the decision
threshold, a, or the amount of evidence needed to make a
decision:

a1 = Pa-Q +ao (13)

We adapted the above ideal observer calculations from a
previous study (Vaghi et al., 2017).

Figure 1: The behavioral task. Participants chose one of two
"mystery boxes” and received probabilistic reward. The total
number of points earned was displayed next to a treasure box
shown on the upper right portion of the screen.

Task

Participants Twenty participants were recruited from the
Paid Psychology Subject Pool and the local community. They
were paid $20 after completing all four conditions. This ex-
periment was approved by the Institutional Review Board at
Carnegie Mellon University.

Stimuli and procedure All participants completed four ses-
sions of 600 trials each, according to a within-subjects design.
To eliminate the effect of timing and its correlates on reward
learning (Byrne, Hughes, Rossell, Johnson, & Murray, 2017;
Murray et al., 2009), participants completed these conditions
across days in counterbalanced order. On each trial, partici-
pants chose one of two mystery boxes that had the possibil-
ity of returning a set of coins (Figure 1). Probabilistic reward
feedback was given in the form of points drawn from the nor-
mal distribution N (u = 3,0 = 1). These points were displayed
above the selected treasure box for 0.9 s. To prevent stereo-
typed responses, the inter-trial interval was sampled from the
uniform distribution U(0.255,0.75s). Participants were in-
structed to obtain as many coins as possible by selecting one
of the two boxes on each trial.

When participants responded in > 1 s, they received a mes-
sage saying, 'Too slow! Choose quickly, When participants
responded in < .1 s, they received a message saying, 'Too
fast! Slow down. You can continue in 5 seconds, and they
were required to wait for 5 seconds before continuing the ex-
periment. In both of these cases, participants did not receive
any reward feedback or earn any points, and the trial was re-
peated so that each participant performed 600 valid trials.

The high-value target was switched at each change point.
The position of the high value target was pseudo-randomized
on each trial to prevent prepotent response selections. Par-
ticipants began with 600 points and lost one point for each
incorrect decision.

Results

Behaviorally, we found that high conflict conditions decreased
accuracy relative to low conflict conditions, and high volatil-



Accuracy Reaction Time
0.8 5
low conflict
0.7
prar 0.45 high conflict
_9 g 0.6 .
= 0
= Lo o 040
8 S 0.4
O e low conflict 0.35
03 high conflict
0.30
02 2 4 6 8 10 2 4 6 8 10
trial trial
0.8 0.50
0.7 low volatility
_‘2‘ 06 0.45 high volatility
+ 0.
B 2os B a0
Eo. .
© S 0.4 b
o = low volatility 035 :1’\/\'—'\,_.—4—.—4
> 0.3 high volatility ’\o—o\'/,__.—c——”’*\q
0.30
02 2 4 6 8 10 2 4 6 8 10
trial trial

Figure 2: Reaction time and accuracy. Plots are aligned to
the beginning of an epoch, where trial 0 is the trial before the
start of the epoch and trial 1 marks the change point. Conflict
affects response accuracy and volatility affects reaction time.
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Figure 3: Deviance Information Criterion (DIC) scores for the
threshold alone model, the drift-rate alone model, and the
combined model. The combined model best accounts for the
data.

ity conditions increased reaction time relative to low volatility
conditions (Figure 2).

The RT distributions generated from the cognitive model
and from human participants were then fit to a drift diffusion
model (Wiecki, Sofer, & Frank, 2013). For the behavioral fits,
we first wanted to confirm our assumption that both drift rate
(v) and decision threshold (a) adapt across conditions. For
these fits, we left either a single parameter or a pair of pa-
rameters free to be fit across conditions. Consistent with our
hypothesis, we found strong evidence that the model which in-
cluded both drift-rate and decision threshold adaptation best
accounted for the data (Figure 3; DIC score difference for drift-
alone and combined model = 479 points, DIC score difference
between threshold-alone and combined model = 751 points).

Using the posterior probability distributions of drift-rate from
both the simulations and the behavioral data, we found that for
both datasets the drift-rate was lower in the high conflict con-
dition than the low conflict condition (Figure 4; observed p(low
conflict drift-rate > high conflict drift-rate) = 1). By comparing
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Figure 4: The posterior probability distributions of drift rate and
decision threshold under conditions of conflict and volatility.

model and behavioral fits we also found qualitative similarities
in the effect of volatility on the decision threshold; the decision
threshold increased with volatility (observed p(high volatility
threshold > low volatility threshold) = 0.77)).

Conclusions

This combined modeling and behavioral study shows initial
confirmatory evidence that different estimates of environmen-
tal uncertainty target distinct decision processes during learn-
ing, with value-conflict decreasing the speed of evidence ac-
cumulation and feedback volatility increasing the amount of
evidence needed to make a decision.
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