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Abstract: 

Cognitive models have become ubiquitous in cognitive science 
and cognitive neuroscience, playing a key role in understanding 

visual cognition, providing insights into how we recognize, 
remember, and categorize objects. Cognitive models are often 
relatively abstract, instantiating high-level aspects of visual 

cognition, such as how visual evidence is represented, how it is 
accumulated, and how response bias and caution combine to 
predict errors and response times in perceptual decisions. 

Many such models instantiate mechanisms flowing from an 
object representation to a perceptual decision but do not specify 
how an object representation is created from the visual image 

of an object. Convolutional Neural Networks (CNNs) have 
become successful at visual tasks like classifying objects in real-
world images. We explore if CNN object representations, built 

up over a network hierarchy from object images, can be used 
as input to a cognitive model to predict human recognition 
performance. We specifically use  CNN representations to drive 

a cognitive model of decision making, the Linear Ballistic 
Accumulator (LBA), to predict a range of performance in a 
visual matching task with novel objects.  
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Introduction 

Our understanding of visual cognition has been enhanced by 

the development of cognitive models that instantiate 

hypothesized mechanisms involved in visual recognition, 

categorization, and memory, and are tested on how well they 

predict the detailed patterns of errors and response times 

observed in visual tasks. Some of the most successful have 

been sequential sampling models. These assume that after an 

object is perceptually encoded with respect to a visual task, 

noisy evidence accumulates towards decision thresholds 

defined by the task. When evidence reaches threshold, a 

response is made. Such models predict human performance 

in a wide range of visual tasks and provide important insights 

into how the brain performs these tasks (Forstmann, Ratcliff, 

& Wagenmakers, 2016). 

Many such cognition models begin in the “middle” of 

processing. They assume, for example, that objects are 

represented as a vector of features in a multidimensional 

psychological space, with the values of those features 

determined by physical properties, psychophysical measures, 

or psychological scaling. These object representations are 

used to generate evidence that drives a decision regarding 

recognition, memory, or categorization; in some cases, the 

evidence itself is a freely estimated parameter of the model. 

Rarely are these models presented the same images of objects 

that are shown to human observers. They are not equipped 

with an explicit visual “front end” for perceptual processing.  

Recently, a class of neural networks known as 

Convolutional Neural Networks (CNNs) have become 

increasingly successful at certain visual tasks such as 

classifying objects in real-world images (e.g., Krizhevsky, 

Sutskever, & Hinton, 2012), and have, in some cases, 

exceeded human performance (e.g., He, Zhang, Ren, & Sun, 

2015). This is largely due to their ability to learn useful 

representations through training on large image databases 

(Russakovsky et al., 2015),  which enable them to generalize 

to new images at testing. While CNNs are inspired by the 

deep, hierarchical, convolutional nature of the primate visual 

system, they are not designed to be models of primate vision. 

CNNs are designed with the goal of achieving the highest 

level of accuracy possible on a given recognition task rather 

than achieving accurate predictions of human response time 

and choice patterns. That said, they have provided insights 

into high-level object representations in the brain 

(Kriegeskorte, 2015; Yamins et al., 2014).  

CNNs and cognitive models have complimentary 

strengths: CNNs are capable of forming representations of 

complex visual images that have proven useful for tasks like 

object classification, while cognitive models are capable of 

predicting human response time and choice in a wide range 

of tasks. We ask whether CNN representations can be used as 

input to cognitive models to predict human performance. 

Here, we connect CNNs to cognitive models by using the 

representations formed by the CNNs to drive evidence 

accumulation to predict details of observed response times 

and accuracies on a matching task using novel objects. Novel 

objects have played a significant role in our understanding of 

visual cognition (e.g., Gauthier, Williams, Tarr, & Tanaka, 

1998; Richler & Palmeri, 2014). One reason for this is that 

novel objects allow for the control of prior experience. In the 

present case, novel objects also allow us to better equate 

experience between CNNs and human observers in that both 



have been exposed to millions of exemplar images of 

everyday objects but neither CNNs nor humans have ever 

seen the novel objects. Basic questions we explore are 

whether CNNs are capable of generalizing to novel object 

recognition and whether their representations can be used to 

drive a cognitive model to predict the range of observed 

human performance.  

Method 

Matching Task 

Data were from 215 participants who observed a novel-object 

matching task (Richler et al., under review). Five categories 

of novel objects from previous research were used: two types 

of greebles, two types of ziggerins, and sheinbugs (see Figure 

1); each category contained 50 exemplar objects. Participants 

completed five matching-task blocks, each with 180 trials. 

Each block used a different category of novel objects. On 

each trial, the participant was presented with a novel object 

for 150 ms followed by a mask for 500 ms. Then, the 

participant was presented with another novel object that was 

either the same or different. The test object varied in 

viewpoint (same or different) and size (same or different). 

Participants were instructed to respond “same” if the two 

objects had the same identity, regardless of viewpoint or size, 

and to respond “different” if the identity of the objects was 

different. Each condition (viewpoint, size, same/different 

identity) was presented an equal number of times and the 

order randomized. The order of the trials was the same for all 

participants.  

Modeling Methods 

CNN. CNN models assume a deep hierarchy of processing 

layers. In many models, initial layers are combinations of 

convolutional layers and pooling layers, and later layers are 

fully connected (fc) layers (see Panel A of Figure 1. 

Convolutional layers are essentially learned filters (or feature 

detectors) that operate over the input from the previous layer 

(mirroring the mathematical operation of convolution) and 

produce a new 2-dimensional activation map. With training, 

a CNN essentially learns banks of filters that respond to 

different features in the image, such as blobs and edges in 

early layers or more complex object features in later layers. 

After each (or some) of the convolutional layers, a pooling 

layer is used to downsample the representation; pooling both 

helps create translation invariance and reduces the number of 

parameters and computational load.  

After several (sometimes dozens of) convolution and 

pooling layers, the representation is (often) passed to fully-

connected (fc) layers, which have connections to all units in 

the previous layer (like a traditional feed-forward neural 

network model). Typically, the units in the last fc layer are 

connected to an output layer with each unit corresponding to 

a category. The unit with the highest activation in this final 

layer corresponds to the best classification by the CNN.  

We tested three different CNN architectures: VGG-16 

(Simonyan & Zisserman, 2014), ResNet50 (He, Zhang, Ren, 

& Sun, 2016), and Inception v3 (Szegedy et al., 2015). These 

networks were all pre-trained on a standard large-scale 

corpus of real-world images of objects. No additional training 

with novel objects was done. Images of novel objects 

(greebles, ziggerins, and sheinbugs) were simply presented to 

the network(s) and we assumed the penultimate network 

representation (before the final classification layer) to be the 

CNN novel object representation.  
 

 
Figure 1. Panel A: Connecting a CNN to a cognitive model. 

Panel B: Representational Distance Matrix (RDM) for novel 

objects. Panel C: Multidimensional Scaling (MDS) solution 

for CNN novel object representations. 

 

Decision Level. We first describe the decision model before 

describing how we connect it to the CNN via cognitive-level 

operations. The particular decision model we used is the LBA 

(Brown & Heathcote, 2008), illustrated on the right of Panel 

A of Figure 1. LBA is a type of sequential sampling model, 

which assume that decisions are made by accumulating 

evidence to threshold over time. Evidence is sampled from 

internal representations at a given rate, called the drift rate, 

and a response is made when the amount of accumulated 

evidence reaches a predetermined response threshold.  

The LBA assumes that evidence accumulation begins after 

an item is perceptually encoding with time, 𝜏𝑒. Accumulators 

corresponding to each response alternative, 𝑟𝑚, begin to 

accumulate evidence with drift rate, 𝛿𝑚, towards a response 

threshold, 𝑏𝑚. Drift rates are sampled on each trial from a 

normal distribution with mean, 𝑣𝑚, and standard deviation, 

𝑠𝑚. The starting point for each accumulator is sampled from 

a uniform distribution between 0 and 𝐴𝑚, where 𝐴𝑚 < 𝑏𝑚. 

Accumulation terminates when the first response threshold is 



reached. A response corresponding to that accumulator is 

made after motor execution time, 𝑡𝑟 (where 𝜏 = 𝜏𝑒 + 𝜏𝑟). 

  

Cognitive Level. Decision models like LBA are generic in 

that drift rates are free parameters and the accumulators can 

correspond to any response alternatives. Here, we assume 

that the responses are “same” versus “different” and we 

create a theory of the LBA drift rates based on CNN novel 

object representations. To simulate a trial of object matching, 

the two objects are presented to the CNN, the distance 

between these representations are computed, these are turned 

into similarities, which are then scaled relative to a criterion 

to create drift rates driving same vs. different accumulators.  

First, Euclidean distance between CNN representations of 

novel objects 𝑖 and 𝑗 in category k, 𝑑𝑖𝑗𝑘 , was computed. Panel 

B of Figure 1 illustrates the representational distance matrix 

(RDM) formed by all pairwise distances between ResNet50 

representations; dark color represents distant novel objects 

and light color represents close novel objects. To help assess 

whether novel object distances produced by the CNN were 

sensible, we obtained a multidimensional scaling (MDS) 

solution of the RDM in two dimensions. Panel C of Figure 1 

shows that the CNN sensibly clusters different types of novel 

objects in the MDS.  

Next, distance between 𝑖 and 𝑗 is transformed to similarity, 

𝜓, for participant, p, in category, k: 

𝜓𝑝𝑖𝑗𝑘 = exp(−𝑐𝑝𝑘𝑑𝑖𝑗𝑘), 

where 𝑐𝑝𝑘 is a subject-specific sensitivity parameter that 

governs how similarity decreases with increases in distance.  

This similarity is then used in a function that rescales 

values between 0 and 1 to produce the mean drift rate for the 

“same” accumulator: 

𝑣𝑠𝑝𝑖𝑗𝑘 =
𝜓𝑝𝑖𝑗𝑘

𝜓𝑝𝑖𝑗𝑘 + 𝛽𝑝𝑘

, 

where 𝛽𝑝𝑘 is a subject-specific criterion that governs the bias 

to respond “different”; the mean drift rate for the “different” 

accumulator is set to 1 − 𝑣𝑠. 

Bayesian Implementation and Fitting Methods 

We used three different CNNs to derive novel object RDMs: 

VGG-16, ResNet50, and Inception v3. With the Keras 

package (Allaire & Chollet, 2018), RDMs were derived from 

each CNN by presenting each CNN with each novel object, 

obtaining the penultimate CNN representation, and finding 

all pairwise distances between pairs of representations.  

We tested two additional models as benchmarks. The first 

benchmark had exactly the same structure as the CNN-based 

models, except that distances were derived from raw images, 

rather than CNN representations. This pixel-based model is 

one that any viable CNN-based model must surpass. The 

second benchmark we refer to as a free model. This is a purely 

abstract cognitive model in that drift rates were simply free 

parameters, not constrained by CNN representations. 

All models were implemented in a Bayesian hierarchical 

framework. For each of the CNN and pixel-based models, 

participant, p, presented with stimulus pair (i,j) in category, 

k, choice response time pairs, 𝑹𝑻, were assumed to be 

distributed according to the LBA:   

𝑹𝑻𝑝𝑖𝑗𝑘  ~ 𝐿𝐵𝐴(𝐴𝑝𝑘, 𝑏𝑝𝑘 , 𝑣𝑠𝑝𝑖𝑗𝑘 , 𝜏𝑝𝑘 , 𝑠𝑠𝑝𝑘 , 𝑠𝑑𝑝𝑘), 

where 𝑠𝑠 and 𝑠𝑑 are the standard deviations of the drift rates 

of the “same” and “different” accumulators, respectively. 

The prior on each participant-level parameters followed a 

truncated normal (from 0 to infinity) with its own respective 

mean, 𝜇𝑝𝑘, and variance, 𝜎𝑝𝑘. Group-level priors on the 

means and variances were as follows: 

𝜇𝑝𝑘
𝑏 , 𝜎𝑝𝑘

𝑏 ~𝑇𝑁(1.4,1.4) 

𝜇𝑝𝑘
𝜏 , 𝜎𝑝𝑘

𝜏 ~𝑇𝑁(.3, .3) 

𝜇𝑝𝑘
𝐴 , 𝜎𝑝𝑘

𝐴 , 𝜇𝑝𝑘
𝑠𝑠 , 𝜎𝑝𝑘

𝑠𝑠 , 𝜇𝑝𝑘
𝑠𝑑 , 𝜎𝑝𝑘

𝑠𝑑~𝑇𝑁(1,1). 

Group-level priors on means and variances of parameters 

involved in transformation also followed a truncated normal: 

𝜇𝑝𝑘
𝑐 , 𝜎𝑝𝑘

𝑐 , 𝜇𝑝𝑘
𝛽

, 𝜎𝑝𝑘
𝛽

, 𝜇𝑝𝑘
𝑤𝑙 , 𝜎𝑝𝑘

𝑤𝑙~𝑇𝑁(1,1). 

For the free model, the “same” accumulator for participant 

p given category k, is allowed to freely vary across conditions 

of object identity, 𝑜 (same vs. different), and viewpoint, ℎ 

(same vs. different):  

𝑹𝑻𝑝𝑜ℎ𝑘  ~ 𝐿𝐵𝐴(𝐴𝑝𝑘, 𝑏𝑝𝑘, 𝑣𝑠𝑝𝑜ℎ𝑘 , 𝜏𝑝𝑘, 𝑠𝑠𝑝𝑘 , 𝑠𝑑𝑝𝑘). 

All priors were the same as those just described with an 

additional prior placed on 𝑣𝑠: 

𝑣𝑠𝑝𝑜ℎ𝑘~𝑇𝑁(𝜇𝑝𝑜ℎ𝑘
𝑣𝑠 , 𝜎𝑝𝑜ℎ𝑘

𝑣𝑠 ), 

where  

𝜇𝑝𝑜ℎ𝑘
𝑣𝑠 , 𝜎𝑝𝑜ℎ𝑘

𝑣𝑠 ~𝑇𝑁(3,3). 

Note, for simplicity, we do not explicitly model size 

conditions (same vs. different) in any of the models (in part 

because there was almost no behavioral effect of size).  

We used Differential Evolution MCMC (DE-MCMC; 

Turner, Sederberg, Brown, & Steyvers, 2013) to estimate the 

joint posterior distribution. We used two times the number of 

subject-level parameters as the number of chains and ran the 

sampler for a total of 3000 iterations discarding the first 1000 

as burn-in. Chains were visually inspected for convergence. 

Model selection was performed by computing the Bayes 

factor, a ratio of the evidence provided by the data in favor 

one model over another. We report log10 Bayes factors in 

terms of the free model. Bayes factors less than 0 indicate 

evidence in favor of the free model, while Bayes factors 

greater than 0 indicate evidence against.  

Results 

Panel A of Figure 2 shows the rank ordering of models in 

terms of the Bayes factor (compared to the free model). The 

data provided decisive evidence in favor of the models using 

the RDM derived from ResNet50 and Inception over the free 

model. Defining drift rates for the LBA from RDMs derived 

from ResNet50 and Inception resulted in an improvement 

over the LBA alone (free model). Models using similarities 

derived from VGG-16 or from raw images (pixel-based) did 

worse than the free model. 

Panel B of Figure 2 shows predicted vs. observed accuracy 

(left panel) and response time quantiles (right panel) for the 



best-firtting model, ResNet50. ResNet50 underestimates the 

accuracy in the same-object different-viewpoint condition, 

which requires the representation of the CNN to be viewpoint 

invariant (a deviance we continue to investigate).  

 

 
Figure 2. Panel A: Rank ordering of models in terms of the 

Bayes factor. Panel B: Predicted vs. observed accuracy and 

response times for ResNet50. 

Conclusion 

We used CNN representations to drive the rate of evidence 

accumulation, drift rate, in a sequential sampling model, 

known as the Linear Ballistic Accumulator (LBA; Brown & 

Heathcote, 2008), to predict choice response times on a 

matching task using novel objects. We chose to use a task 

with novel objects because of the importance of novel object 

recognition in research and to better equate experience 

between the CNNs and human participants. We used three 

different CNNs: VGG-16, Inception v3, and ResNet50. We 

obtained the penultimate representations for each novel 

object, whose pairwise distances formed a Representational 

Distance Matrix (RDM). We then used the distances from the 

RDM to derive similarities between objects. These 

similarities were then scaled and used as the mean of the drift 

rates in the LBA. We found the data provided decisive 

evidence in favor of combining CNNs with the LBA over the 

LBA alone. Specifically, the data provided the most evidence 

for the LBA driven by the RDM from ResNet50.   
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