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Abstract

When multiple pieces of information bear on a decision,
the best approach is to integrate the evidence provided by
each one. Signatures of evidence integration have been
identified in neuronal responses during decision forma-
tion, leading many investigations of how the brain pro-
duces complex behavior to focus on these computations.
Yet, because evidence integration has most often been
studied in simple tasks with short timescales of deliber-
ation, it is unknown whether these models can provide a
general account of decision-making. Here, we introduce
a novel psychophysical paradigm with a long and discon-
tinuous timescale of evidence availability. We show that
choice behavior in this task reflects an evidence integra-
tion process that can extend over tens of seconds with-
out loss of information due to memory leak or noise. Our
results reveal that temporally-extended decisions approx-
imate the normative computations used for rapid sensory
discrimination, validating the generality of the evidence
integration framework for modeling human cognition.
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Background

Evidence integration models represent a powerful synthesis
of cognitive neuroscience and computational theory (Shadlen
& Kiani, 2013). They make strong quantitative predictions
about the speed and accuracy of simple perceptual discrim-
inations, and they provide a computational framework for ex-
ploring higher-level phenomena such as confidence, strategy,
and flexibility. Evidence integration models also provide a ba-
sis for modeling and interpreting the neural mechanisms that
underlie decision-making behaviors (Gold & Shadlen, 2007)
and for translating insights across measurement modalities
and model systems (Hanks & Summerfield, 2017). They are
therefore regarded as a promising approach for studying the
computational and neural basis of cognition.

Despite this promise, a major limitation of the evidence in-
tegration framework is that its relevance to decision-making
behaviors beyond rapid perceptual discrimination is not clear.
Perceptual discrimination tasks afford tight experimental con-
trol and embody many important aspects of decision-making,
but they rarely demand integration at timescales longer than
hundreds of milliseconds. In contrast, humans often delib-
erate for many seconds (or even much longer) while making

decisions in daily life, and in doing so frequently consider mul-
tiple discrete pieces of information that bear on their choice.
The disconnect between experimental tasks and naturalis-
tic behavior is relevant because the long and discontinuous
timescale of evidence availability in the natural world might
prove challenging for the neural mechanisms thought to un-
derlie integration of evidence in rapid discrimination tasks.

Experimental paradigm

To address this challenge, we developed a novel psychophys-
ical paradigm that permits evaluation of evidence integra-
tion models in the context of long-timescale decisions. Our
paradigm builds on the success of established perceptual dis-
crimination tasks by providing evidence to the subject in the
form of simple visual stimuli that can be parametrically con-
trolled with high precision and whose basic encoding and rep-
resentation in sensory cortex is well understood. Rather than
expose these stimuli to subjects in a continuous stream, how-
ever, we ask subjects to make decisions on the basis of multi-
ple brief exposures with variable strength that are separated in
time by unpredictable gaps. Precise knowledge of the timing
and strength of each sample permits detailed computational
modeling of the mechanisms through which that evidence is
used to determine the subject’s choice.

A specific implementation of the task is shown in Fig. 1. Dur-
ing each trial, the subject sees brief (200 ms) presentations of
a contrast pattern (a “sample”) while maintaining central fixa-
tion (Fig. 1B). These samples are drawn, on any given trial,
from one of two overlapping Gaussian distributions in log con-
trast space (Fig. 1B). The subject’s task is to infer, on the basis
of the samples seen in that trial, whether they had been gener-
ated from the “low” distribution or from the “high” distribution.
We control the amount of information available for this infer-
ence by showing between one and five samples per trial (Fig.
1C). We additionally control when the evidence is available by
separating each sample with an unpredictable gap of several
seconds in duration (Fig. 1D). The data reported here were
collected in sessions where the gaps were either “shorter” (1–
4 s) or “longer” (2–8 s); these gaps extended the timescale
of deliberation on many trials to tens of seconds (mean trial
duration, 10.1s ± 5.6 s; range, 2.2–34 s).

Five human subjects were trained on this task until they
reached an accuracy criterion (>76% correct; achieved over
2–4 sessions) and then performed, in total, 14,869 trials. This
rich dataset allowed us to characterize the computations un-
derlying decision-making behavior in our task.
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Figure 1: Experimental design. (A) Sequence of events in a
trial. (B) Generating distributions for contrast samples. (C)
Distribution of sample counts across trials. (D) Distributions of
gap durations across trials in two timing conditions.

Computational models

We focus here on three questions. First, did subjects com-
bine information from multiple samples before reaching a deci-
sion? Second, did information held in working memory decay
or drift during the long gaps between samples? Third, were
decisions based on the graded weight of evidence afforded by
each sample? Together, these questions allow us to assess
whether decisions were made through evidence integration at
long timescales.

We answered these questions by implementing a set of com-
putational models that formalize different approaches for us-
ing the evidence to make a choice. These models generate
both quantitative predictions and qualitative signatures that
are characteristic of different decision-making mechanisms.
We focus here on four specific models: one implements the
optimal policy of evidence integration and serves as a base-
line for comparison, while the others provide insight into each
of the three questions enumerated above. The models share a
general structure of using each sample of evidence, denoted
x, to update a decision variable, denoted V . The evidence
is quantified by the log likelihood ratio (LLR) that the sample
was generated from the high contrast distribution, and choice
is determined by the sign of the decision variable at the end of
the trial.

Linear Integration: Optimal performance in the task can be
achieved by summing the continuous weight of evidence af-
forded by each sample. This computation can be formalized
in a “Linear Integration” model defined by the following differ-
ence equation:

Vi =Vi−1 + xi +ξη . (1)

Choice variability arises in the Linear Integration model be-
cause each sample is subject to Gaussian noise during sen-
sory encoding, represented by ξη. The only free parameter
in the model is ση, the standard deviation of ξη. Linear In-
tegration is optimal in that it is limited only by variability in
the stimulus generation and noisy perception of each sam-
ple; no other information is distorted or lost during deliberation
(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006).

Extrema Detection: An alternate strategy, which can mimic
integration of evidence in some settings, involves sequen-
tial sampling and commitment based on extreme values with-
out using memory or integration. In this “Extrema Detection”
model, each sample is compared against a decision thresh-
old; if the threshold is exceeded, the process terminates in
a commitment to the corresponding alternative, and further
samples are ignored. Prior to commitment, intermediate sam-
ples of evidence are discarded and have no bearing on choice.
If none of the samples produce a commitment by the end of
the trial, then a response is generated randomly. The process
leads to the following difference equation:

Vi =


+1 Vi−1 = 0 and xi +ξη >+θx

−1 Vi−1 = 0 and xi +ξη <−θx

Vi−1 Vi−1 6= 0 or −θx < xi +ξη < θx .

(2)

As in the Linear Integration model, ξη represents Gaussian
noise with standard deviation ση, and the other free parameter
is θx, which represents the decision threshold.

Leaky Integration: The normative model in Eq. 1 does not
require any information about the timing of the samples or the
gaps between them. It is possible, however, that long delib-
eration timescales would cause deviations from normative in-
tegration due to limitations in working memory. To test for the
presence of such limitations, we extended Eq. 1 into the tem-
poral domain and explicitly modeled two ways that the integra-
tor could lose information during the gaps: memory leak and
memory noise. This “Leaky Integration” model can be defined
by the following difference equation:

V (t) =V (t−∆t)−∆tλV (t−∆t)+ x(t)+ I(t)ξη +ξd . (3)

In this equation, λ represents the memory leak rate (the in-
verse of the integration time constant τ) and is scaled by time
step ∆t so that it is expressed in units of seconds. x(t) rep-
resents the strength of evidence at time t and is 0 during
the gaps. I(t) is an indicator variable that specifies when a
sample is visible and governs the influence of sensory noise,



ξη ∼ N (0,ση). Finally, ξd ∼ N (0,σd) represents memory
noise, which accumulates throughout the gaps. When imple-
menting the model, we used a time step equal to the sample
duration (∆t = 200 ms).

Transformed Evidence: The normative model in Eq. 1
makes full use of the graded weight of evidence afforded by
each sample. Another potential deviation from normative in-
tegration in our task would therefore involve transformations
applied to the evidence values before they enter into the inte-
grator that cause them to deviate from the LLR. One extreme
form of transformation would be to binarize the evidence from
each sample as supporting either a “high” or “low” choice. This
would cause the integration process to resemble counting with
discrete values. More intermediate forms of transformation
that curtail the weight of evidence in the tails of the distribu-
tions while amplifying evidence near the category boundary
have also been proposed. This family of transformations can
be modeled with a transfer function (Cheadle et al., 2014):

f (x,σρ) =−1+2
∫ x
−1 ϕ(y | 0,σρ)dy∫ 1
−1 ϕ(y | 0,σρ)dy

, (4)

where ϕ is a Gaussian PDF with standard deviation σρ.
This function transforms evidence with increasing strength for
smaller values of σρ and approaches a discrete step function
as σρ→ 0. Using the transformed evidence in the integration
process alters Eq. 1 to

Vi =Vi−1 + f (xi +ξη,σρ) , (5)

corresponding to a “Transformed Evidence” model.

Results

We fit the free parameters of each model by maximizing the
likelihood of choice data given the sequence of samples on
each trial. We then assessed model performance in several
ways, including model comparison, consideration of qualita-
tive model signatures, and inference on estimated parameter
values. Here, we focus on comparing choice data and aggre-
gate model predictions in terms of how well the models can
explain improvements in accuracy with more samples (Fig. 2),
a key feature for contrasting models of decision-making.

In the Linear Integration model, the improvement of accuracy
with additional samples is jointly determined by the separation
between the generating distributions and the sensory noise
parameter ση. This function can be analytically derived from
Eq. 1. Fig. 2A shows a qualitative match between model and
data when fitting on all trials (solid line) and a nearly identical
parameterization for trials with either longer or shorter gaps
(dashed and dotted lines). Despite the qualitative agreement,
it is apparently that the slope of the improvement is somewhat
shallower for the data than for the model. This suggests that

the Linear Integration model is slightly overestimating ση and
that information is being lost in some other way.

Can this discrepancy be explained by sequential sampling
without memory? It is also possible to derive how accuracy
should improve with additional samples for the Extrema De-
tection model using Eq. 2. Fig. 2B shows the prediction of
this model and indicates that the data cannot be explained by
Extrema Detection, which systematically fails to account both
for the overall level of accuracy and for the improvement in ac-
curacy with additional samples. Indeed, in individual subject
fits, the Linear Integration model provided significantly better
match to the data than the Extrema Detection model for all
subjects (bootstrap test; all Ps < 0.05). This result indicates
that behavioral performance was supported by a process of
combining information across samples.

We expected that, even if the task were solved through inte-
gration, the long gaps would cause some amount of informa-
tion from early samples to be lost. Surprisingly, Fig. 2C shows
that there was minimal influence of either leak or noise in the
integrator memory. Simulating performance for the Leaky In-
tegration model with the best fitting parameters produces a
function that is indistinguishable from the Linear Integration
prediction. In individual subject fits, only one subject had a
leak rate that was significantly different from 0 (bootstrap test,
P < 0.05), and the integration time constant was estimated
to be larger than 20 s in all subjects. Further, the memory
noise parameter σd was close to 0 and approximately an or-
der of magnitude smaller than the sensory noise parameter
ση in all subjects. This panel also shows simulated perfor-
mance for models with a moderate leak rate (dashed line,
corresponding to τ = 2 s) or moderate memory noise (dotted
line). These functions depart from the data in clear and dis-
tinct ways. Therefore, our experimental design can distinguish
different parameterizations of the leaky integration model, but
the data are most consistent with a process that approximates
perfect integration and has minimal leak or accumulation of
noise between samples.

Fig. 2D further shows that the integration process used a
moderately transformed weight from each sample, integrating
continuous evidence but reducing the influence of samples
that strongly favored either choice. Simulated performance
for the Transformed Evidence model with the best fitting pa-
rameters shows a close correspondence to the data, and the
estimated transformation parameter σρ was larger than 0 in
all subjects. The panel also shows predicted performance for
a model with σρ = 0 (dashed line), which implements a pro-
cess of counting binarized representations of each sample.
The prediction of the counting model fails to explain the data,
because when σρ = 0, binarization forces random guessing
on many trials with even numbers of samples, and aggregate
performance is identical to that on trials with the next smallest
odd number of samples. This effect does not exist in the data
(all Ps < 0.05).
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Figure 2: Model fitting results. Black points show means and 95% C.I.s. Solid lines show model predictions using maximum
likelihood estimates (MLE) for free parameters, and dashed lines show predictions using alternate parameterizations.

Conclusions

Our novel experimental paradigm allows us to determine
whether the evidence integration framework can account for
decisions about discrete samples of sensory evidence that are
separated by long and unpredictable gaps. These gaps ex-
tended the timescale of the deliberation process to an order of
magnitude beyond standard perceptual discrimination tasks.
We found that choice behavior was nevertheless consistent
with a normative integration process that combined graded in-
formation from multiple samples with minimal memory leak
or noise. A small departure from optimal performance could
be explained by integration of transformed values that under-
weighted strong evidence. Therefore, our results support the
generalization of many insights about decision-making that
have been developed through the study of simple perceptual
tasks to a broader class of more naturalistic decisions, ad-
dressing, for the first time, a long-lasting concern in the field.

While our results show that similar computational principles
underlie decision-making at different timescales (Brunton,
Botvinick, & Brody, 2013), they also prompt new questions
about the neural implementation of the evidence integration
process. In the standard model, evidence integration is imple-
mented by persistent firing in networks of spiking neurons sup-
ported by local recurrent excitation (Gold & Shadlen, 2007).
This mechanism is often modeled using attractor dynamics
(Wang, 2008). Yet many standard parameterizations of these
models would fail to maintain evidence across the gaps in our
task, particularly at the longest durations. For example, net-
works that implement bi-stable point attractor dynamics would
be subject to catastrophic leak during each gap and would
be driven towards a choice based on a single strong sam-
ple, whereas networks that implement line attractor dynamics
would be dominated by memory noise. We found instead that
performance was largely invariant to a wide range of gap du-
rations. One alternative explanation could be that evidence

integration for long-timescale decisions is supported by dis-
tributed interactions between multiple large-scale systems in-
cluding those supporting long-term memory. As this question
comes into focus, we note that extending the timescale of the
deliberation process also makes it accessible to study with
functional MRI, adding a powerful new tool to the study of this
fundamental cognitive ability.
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