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Abstract
Primate core visual object recognition is thought to rely
on the ventral visual stream, a hierarchy of cortical ar-
eas culminating in inferior temporal (IT) cortex. Previ-
ous work has shown that the IT population responses
accurately predict primate object recognition behavior,
suggesting that these IT codes underlie these behav-
iors. However, direct causal evidence for this decoding
hypothesis has been equivocal at best, especially be-
yond the specific case of face-selective sub-regions of
IT. Here, we tested the general causal role of IT in core
object recognition by reversibly inactivating individual,
millimeter-scale regions of IT via injection of muscimol
while monkeys performed several binary object discrim-
ination tasks, interleaved trial-by-trial. Our results show
that inactivating different millimeter-scale sub-regions of
primate IT resulted in different patterns of task deficits.
These results provide new constraints for computational
models of the ventral stream and this behavior. To this
end, we tested state-of-the-art deep convolutional neural
network models by constructing topographic deep arti-
ficial neural networks (TDANNs) on which we simulated
inactivation experiments. Our results show that TDANNs
recapitulated first-order experimental phenomena slightly
better than randomly mapped deep artificial neural net-
work models. Taken together, these results establish and
test a new class of experimental constraints for computa-
tional models of core object recognition.
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Introduction
Primate core visual object recognition — the ability to rapidly
recognize objects in spite of naturally occurring identity-
preserving image variability — is thought to rely on the ventral
visual stream, a hierarchy of visual cortical areas (DiCarlo et
al., 2012). In particular, decades of research suggest that
inferior temporal (IT) cortex, the highest level of the ventral
stream hierarchy, is a necessary part of the brain’s neural
network that underlies core recognition behavior (Logothetis
& Sheinberg, 1996; Tanaka, 1996; Rolls, 2000; DiCarlo, Zoc-
colan, & Rust, 2012). For example, it has been shown that the
population of neurons in IT not only matches overall primate
behavioral performance (Hung, Kreiman, Poggio, & DiCarlo,
2005; Zhang et al., 2011) but also predicts primate behavioral
patterns (Sheinberg & Logothetis, 1997; de Beeck, Wage-
mans, & Vogels, 2001; Majaj, Hong, Solomon, & DiCarlo,

2015), suggesting that IT is a good neural correlate of primate
recognition behavior. These observations are consistent with
the causal dependency of core object recognition behavior
on IT, but could also reflect epiphenomenal mechanisms
(e.g.(Katz, Yates, Pillow, & Huk, 2016; Liu & Pack, 2017)). For
clarity, we adopt the terminology of (Jazayeri & Afraz, 2017),
whereby causal dependencies link a dependent variable to an
experimentally controlled variable, in contrast to correlational
dependencies (associations that we measure but do not
control). Thus, to infer a causal link between activity in IT and
behavior, it is necessary to directly manipulate activity in IT
(e.g. via the application of pharmacological agents into IT to
silence neurons, etc.) while measuring behavior.

To date, the most successful direct manipulations of IT ex-
clusively targeted millimeter-scale clusters of face-selective
neurons in IT (S.-R. Afraz, Kiani, & Esteky, 2006; A. Afraz,
Boyden, & DiCarlo, 2015; Moeller, Crapse, Chang, & Tsao,
2017; Sadagopan, Zarco, & Freiwald, 2017), and suggest that
these IT sub-regions are necessary for at least some basic-
and subordinate-level face recognition behaviors. However,
results from direct manipulations of IT in general visual recog-
nition behavior have been equivocal at best. Lesions of IT
sometimes suggest the necessity of IT and visual behaviors
(Cowey & Gross, 1970; Manning, 1972; Holmes & Gross,
1984; Biederman, Gerhardstein, Cooper, & Nelson, 1997;
Buffalo, Ramus, Squire, & Zola, 2000) but the resulting be-
havioral deficits are often contradictory (with often no lasting
visual deficits) (Dean, 1974; Huxlin, Saunders, Marchionini,
Pham, & Merigan, 2000) and at best modest (Horel, Pytko-
Joiner, Voytko, & Salsbury, 1987; Matsumoto, Eldridge, Saun-
ders, Reoli, & Richmond, 2016). Thus, it is still unclear if IT
is necessary for general core object recognition behavior, and
furthermore if that assumed causal role is spatially organized.

Results
To investigate these open questions, we here reversibly inac-
tivated individual, arbitrarily sampled millimeter-scale regions
of IT via local injection of muscimol while monkeys performed
several (6 or 10) binary core object discrimination tasks be-
tween five objects, interleaved trial-by-trial (see Figure 1A for
behavioral paradigm). To enforce true invariant recognition,
stimuli consisted of naturalistic synthetic images of 3D objects
rendered under high view-uncertainty. Figure 1B-D shows the
behavioral deficits for six tasks, for each of three example in-
activation experiments, plotting the relative performance for
control and muscimol inactivation conditions. For each exper-
iment, the corresponding anatomical location of the inactiva-
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Figure 1: (A) Behavioral paradigm. The list shows all tested pairwise object discrimination tasks between five objects, interleaved
trial-by-trial. Each trial was initiated when the monkey acquired and held gaze fixation on a central fixation point for 200ms, after
which a test image (8x8 degrees of visual angle in size) appeared at the center of gaze for 100ms. After extinction of the test
image, two choice images, each displaying a single object in a canonical view with no background, were immediately shown to
the left and right; one of these two objects was always the same as the object that generated the test image (i.e. the correct
choice), and its location (left or right) was randomly chosen on each trial. The monkey was allowed to freely view the choice
images for up to 1000ms, and indicated its final choice by holding fixation over the selected image for 700ms. Animals were
rewarded with small juice rewards for successfully completing each trial. After the end of each trial, another fixation point before
the next test image appeared. Each trial consisted of a different randomly selected binary task. (B-D) Example inactivation
experiments. For three example inactivation experiments in three different IT sites, the resulting behavioral deficits over tasks
and the corresponding anatomical locations are shown.

tion site is shown in the inset. For each inactivation experi-
ment, we observed a strong and significant deficit for some
tasks but not others.

We quantify the task selective deficits resulting from focal
inactivations in Figure 2. Over all inactivation sites (n = 25
in two monkeys), we observed a significant decrease in per-
formance of µδ =−0.2±0.02 in units of d’ (p = 1.23∗10−16,
one-tailed exact test; see Figure 2A left panel red bar). We ob-
served no such behavioral deficit on otherwise identical exper-
iments but without inactivation, (muδ = 0.02±0.03, p = 0.78;
one-tailed exact test; see Figure 2A left panel, blue bar). We
quantified this task-selectivity by computing a sparsity index
(SI) for each inactivations behavioral deficit pattern, i.e. the
sparsity over tasks. This index has a value of 0 if all tasks
are equally affected, and a value of 1 for a perfectly task-
specialized or one-hot deficit pattern. Figure 2A (right panel)
shows that inactivation of local regions in IT leads to highly
non-uniform deficits (SI = 0.71±0.05; mean±SE over sites);
this degree of task selectivity is greater than expected for a
uniform deficit (p= 2.42∗10−16; relative to simulated uniform,
see Figure 2A right panel) but significantly less than expected
for a one-hot deficit pattern (p = 5.28∗10−3; relative to simu-
lated one-hot, see Figure 2A right panel).

These data establish new quantitative constraints for com-
putational models of core object recognition behavior. That
is, the correct model of the ventral stream should produce

the same magnitudes and types of deficits when the neurons
in that model are locally suppressed. While we and others
have previously shown that deep CNN models are good mod-
els of the response of ventral stream neurons and behavior
(Rajalingham, Schmidt, & DiCarlo, 2015; Jozwik, Kriegesko-
rte, & Mur, 2016; Kheradpisheh, Ghodrati, Ganjtabesh, &
Masquelier, 2016; Kubilius, Bracci, & de Beeck, 2016; Cadieu
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et
al., 2014; Guclu & van Gerven, 2015; Cichy, Khosla, Pantazis,
Torralba, & Oliva, 2016), these models are limited in that they
do not specify how different types of neurons in each model
visual area (a.k.a. model layer) are spatially organized. Thus,
we have built specializations of this family of models that have
topographic organization that we refer to as Topographic Deep
Artificial Neural Networks (TDANNs, , schematized in Figure
2B). To build a TDANN, we adapted state-of-the-art deep con-
volutional neural network models. To do so, we first measured
the profile of response correlations versus cortical distances
for thousands of pairs of neurons recorded from macaque IT
cortex of monkeys that were not used in this study; this re-
sponse profile served as a topographic constraint to the mod-
els topographic cost function. In essence, the cost function
expresses the idea that neurons with similar patterns of re-
sponses (over images) should try to be spatially close, and
neurons with different patterns of responses should be spa-
tially far.
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Figure 2: (A) Quantitative measurements of deficit magnitude and sparsity over n = 25 inactivation experiments in two monkeys.
(B) Schematic of the Topographic Deep Artificial Neural Networks (TDANNs) models. TDANNs are adaptations of the Alexnet
(Krizhevsky et al., 2012) architecture with tissue maps attached to the first fully connected (fc6) layer (Figure 2B). Networks were
simultaneously optimized for image classification task on the ILSVRC-2012 dataset, and penalized if the model unit response
profile did not match the experimentally derived spatial response profile. (C) TDANNs recapitulated some first-order phenomena,
namely the relationship between magnitude and sparsity of behavioral deficits (blue), slightly better than randomly mapped deep
artificial neural network models (green). The empirical values from (A) are plotted in red.

The TDANNs presented here are adaptations of the Alexnet
architecture (Krizhevsky et al., 2012) with tissue maps at-
tached to the first fully connected (fc6) layer (Figure 2B). In or-
der to simulate the topographic maps, each network unit was
initially assigned a random position in a two-dimensional sur-
face. Networks were simultaneously optimized for image clas-
sification task on the ILSVRC-2012 dataset and for spatially
organizing those learned neural response types according to
the topographic cost function (above). For reproducibility, 10
TDANNs were trained with different parameter initializations.

With these TDANNs in hand, we could ask how well they
predicted the IT focal inactivation results. To do this, we simu-
lated focal inactivation experiments, by zero-ing spatially con-
tiguous subsets of features in the fc6 layer and propagating
the simulated responses to a (pre-trained) behavioral read-
out. We then characterized the differences in behavioral re-
sponses between the intact and inactivated models, for a large
number of randomly localized inactivations, while also varying
the size of the inactivations.

Our results show that TDANNs recapitulated the observed
experimental phenomena, namely the magnitude and spar-
sity of behavioral deficits (see Figure 2C, blue), slightly better
than randomly mapped deep artificial neural network models
(see Figure 2C, green). We do not claim this model class cap-
tures all aspects of the observed deficits, but rather provides
a good starting point for that greater goal. Taken together,
these results establish and test a new class of experimental
constraints for computational models the ventral visual stream
and its role in core object recognition.
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