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Abstract

The brain is constantly dealing with two streams of in-
formation: the feedforward stream which carries sensory
inputs, and the feedback stream that contains predictions
derived from internal models that the brain has about
the world. During a brain imaging experiment, an effec-
tive method to study the feedback stream is to occlude a
portion of the image presented, thereby isolating it from
the feedforward signal. The predictive coding framework
suggests that the brain is trying to reconstruct the image
under the occlusion; this operation is conceptually sim-
ilar to the image processing task of inpainting, in which
an artificial model predicts the missing image part. Us-
ing an encoder/decoder network architecture, trained to
fill occlusions and reconstruct an unseen image, we in-
vestigated similarities and contradictions between brain
visual pathway and artificial neural networks. We will per-
form comparisons between brain data collected at 3T and
7T during the vision of static images and different lay-
ers of the encoder/decoder network. These analyses will
be conducted using Representational Similarity Analysis
(RSA) and by creating encoding models to investigate vi-
sual pathways and V1 layers. Understanding how infor-
mation is integrated together in the early visual cortex will
provide insight to fundamental neuroscientific questions
about human vision, cognition, and perception.
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ing.

Introduction

The brain is a prediction machine. In addition to receiving
sensory information, it actively generates sensory predictions.
It does so by creating internal models about the world which
are used to predict upcoming sensory inputs. Therefore, the
brain is constantly dealing with two streams of information:
the feedforward stream (carrying the sensory input) and the
feedback stream (carrying the predictions). This perspective
has led to a paradigm shift in cognitive neuroscience over the
last two decades. One of the relevant theories on this topic
is “predictive coding”, which interprets the brain as an infer-
ence engine, optimising representations built by sensory input
(Clark, 2015).

A number of studies have investigated the composition and
interaction of the two information streams, using different brain
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data across different species. An effective method to investi-
gate the problem is to apply an occlusion paradigm, where im-
ages and videos are partially occluded (Smith & Muckli, 2010;
Muckli et al., 2015). This blocks the feedforward stream al-
lowing the isolation of cortical feedback signals and lateral
connections. In the brain data analysis, this is important for
the retinotopic nature of V1, since there is a direct correspon-
dence between image and cortical spaces.

There are two approaches to analyse brain data in this con-
text: a more indirect analysis with representational similarity
analyses (RSA, Kriegeskorte, Mur, and Bandettini (2008); Nili
et al. (2014)) and a direct one, with encoding models. RSA
tests the similarity between brain responses and other type of
representations (as for example computational models or be-
havioural responses) obtained on the same stimuli. Instead,
encoding models (Naselaris, Kay, Nishimoto, & Gallant, 2011)
consider the association between multi-dimensional features
of a stimulus and the value of each brain voxel. Using this gen-
erative encoding model, the brain response associated with
a new stimulus reconstructed by pooling separate voxel re-
sponses.

Importantly, the success of both encoding models and RSA
relies on the validity of the feature space used to represent the
stimuli. In this respect, Deep Learning (DL) methods (in par-
ticular Convolutional Neural Networks - CNN) have become
the leading methods for automatic feature learning because
they provide image and movie feature representations at dif-
ferent degrees of abstraction. Recently, multiple advances in
deep learning have made important contributions in unsuper-
vised learning. Examples include reconstruction of unseen or
damaged parts of images (termed inpainting; Pathak, Krahen-
buhl, Donahue, Darrell, and Efros (2016)), image segmenta-
tion (Ronneberger, Fischer, & Brox, 2015), and representation
learning (automatically discovering pattern in data). These ad-
vances have allowed the development of effective generative
models such as deep encoder/decoder or generative adver-
sarial networks (Mirza & Osindero, 2014).

The attempt to relate DL models with brain imaging data
started only few years ago. Some studies which revealed in-
teresting similarities between CNN architectures and the hier-
archy of biological vision (Yamins & DiCarlo, 2016). For exam-
ple, one study showed how a CNN resembles representational
similarity of Inferior Temporal (IT) intra- and inter-categories
(Khaligh-Razavi & Kriegeskorte, 2014). Another study (Cichy,
Khosla, Pantazis, Torralba, & Oliva, 2016) described how a
CNN captured the stages of human visual processing in time
and space from early visual areas towards the dorsal and ven-



tral streams. In a noteworthy finding, fMRI encoding modelling
work by (Gigli & van Gerven, 2015) indicated that a stimulus
decomposition based on selected layers from a pre-trained
CNN outperformed the Gabor-based approach proposed in
(Kay, Naselaris, Prenger, & Gallant, 2008).

The work we propose here is tries to benefit from these
generative models to gain a better understanding of how
cortical prediction works. Exploiting the occlusion paradigm
(where portion of the scene is occluded suppressing feed-
forward signals), we aim to interpret the detected cortical
feedback signals in brain data by comparing them to en-
coder/decoder layers trained on an inpainting task to recon-
struct occluded images. This comparison, previously done
between brain signals and convolutional neural network lay-
ers activations (Khaligh-Razavi & Kriegeskorte, 2014; Cichy
et al., 2016), is now carried out with an encoding scheme us-
ing encoder/decoder layers in order to predict fMRI feedback
signals.

Model training

The model we trained to fill occlusion for solving inpait-
ing task is a fully-convolutional neural network, with the en-
coder/decoder architecture, and with skip connections (known
as U-Net and described in Ronneberger et al. (2015)); the
model is shown in Figure 1.
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Figure 1: Model architecture with encoder details (decoder is
mirrored).

The way we trained the network is similar to what has been
proposed in (Isola, Zhu, Zhou, & Efros, 2017); they proposed
to learn not only the mapping from input image to output im-
age, but also the best loss function to train this mapping.
This is crucial in unsupervised learning, where labels or cat-
egories are not available; this is accomplished in their work
using conditional adversarial neural networks (Goodfellow et
al., 2014). The training has been carried out using images
from SUN database (Xiao, Hays, Ehinger, Oliva, & Torralba,
2010), with occluded images as input of the network and orig-
inal images - i.e., to reconstruct - as output; some images from
the database where discarded because they were too small,

which led to a total of ~ 70000 images for the training. A
graphical result to appreciate the quality of the output of the
network is shown in Figure 2. For the experimental part, we
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Figure 2: Model results with (a) the input to the network, (b)
the output of the network, and (c) the target used to trained
the network (i.e., the original image).

will train the network to reconstruct grayscale images with oc-
clusion and masked with a circular aperture; images used in
the experiment were not part of the train set.

Brain data

We used 3T and 7T-fMRI brain data acquired at different res-
olutions to investigate visual pathways and V1 layers.

3-Tesla Eighteen healthy volunteers with normal or
corrected-to-normal vision participated in this study. Twenty-
four real-world scenes from six categories (beaches,
buildings, forests, highways, industry, and mountains), from
the dataset in (Walther, Caddigan, Fei-Fei, & Beck, 2009)



were shown to participants. Images were displayed in
grayscale on a rear-projection screen using a projector
system.  Stimuli spanned 19.5° x 14.7° of visual angle,
and were presented with the lower-right quadrant occluded
by a white box (occluded region spanned =~ 9° x 7°). A
centralised fixation checkerboard marked the centre of the
scene images. Over the course of the experiment, each
image was presented 16 times.

Functional scanning is conducted at the Centre for Cogni-
tive Neuroimaging, at University of Glasgow. We used EPI se-
quences to acquire partial brain volumes aligned to maximise
coverage of the visual pathway (18 slices; voxel size: 3mm,
isotropic; 0.3mm interslice gap; TR = 1000ms; TE = 30ms;
matrix size = 70 x 64; FOV = 210 x 192mm).

7-Tesla Three healthy volunteers with normal or corrected-
to-normal vision participated in this study. 384 real-world
scenes were chosen from the SUN database (Xiao et al.,
2010). One set was presented with the lower-right quadrant
occluded by a white box, one set was presented without occlu-
sion, and one set was presented with and without occlusion.
Images were displayed in grayscale, matched for global lu-
minance, and masked with a circular aperture which linearly
faded to the background (mean grayscale across scenes) from
4.9° to 5.15° visual angle (Kay et al., 2008). Stimuli were pre-
sented on a rear-projection screen using a projector system
and spanned 10.38° x 10.38° visual angle. A centralised fix-
ation checkerboard marked the centre of the scene images.

MRI data were collected at the University of Maastricht,
Netherlands using a research-dedicated 7T Magnetom MRI
system with a 32-channel head coil. High-resolution functional
images were obtained using a T2*-weighted gradient echo
EPI with the following parameters: echo time (TE) = 25ms,
repetition time (TR) = 2000ms, iPAT-factor = 3, multi-band
factor = 2, flip angle = 75, number of slices = 56, matrix
= 186 x 186, voxel size = 0.8mm isotropic. The field-of-
view included occipital early visual cortex, centered on the
calcarine sulcus.

Discussion

Visual stream The first goal we aim to achieve next is to
replicate the study of Cichy et al. (2016) in comparing spa-
tial visual brain representations with representations in an ar-
tificial deep neural network (DNN) through RSA. Relating 3T
data (with occluded images only) and the encoder branch of
the network, we want to see how DNN layers are similar to
visual stream areas. The key result we hope to achieve is to
reveal the hierarchy of human visual processing in space from
early visual areas towards the dorsal and ventral streams, in
line with results in (Cichy et al., 2016).

Our approach expands Cichy et al’s work by using RSA to
test, which DNN branch - that is, encoder or decoder - has
stronger similarity with brain data representations. The semi-
partial correlation may help to discriminate between contribu-
tion from one and the other branch (unique information each
branch contributed to voxel prediction). In this context, an in-

teresting question is to understand if cortical processing of
the occluded area is more similar to the encoder or the de-
coder stream, bringing more hints on how we should interpret
the predictive coding theory. How CNN layers resembles rep-
resentations in Inferior Temporal (IT) cortex in humans was
already shown in (Khaligh-Razavi & Kriegeskorte, 2014); our
work will extend theirs to also other areas of visual pathway.
In addition, using regression methods we can build encoding
models of voxel responses, to evaluate the ability of the two
branches in reconstructing voxel betas.

V1 layer specificity Using 7T data, we will focus attention
on layer-specific processing in the visual cortex. This data
was collected using static images with and without occlu-
sion. In this context, we define feedforward models as the
responses to scenes as they were presented (i.e., with the
occlusion); instead feedback models are defined as model re-
sponses as they would be predicted (i.e., with no occlusion).
Both datasets allow us to build encoding models that describe
feedforward and feedback streams: feedforward models use
occluded images and feedback models using non-occluded
images. The encoding will be conducted at the voxel level,
modelling voxel-specific predictors through ridge regression
with regularisation (Formisano, De Martino, & Valente, 2008).
Understanding how every DNN layer contributes to the pre-
diction of layer-wise activity, analysing encoding and decod-
ing branch contributions, will give us an insight into the cortex
organisation at the layer-wise level. In terms of similarities,
RSA analyses can give us additional information on the same
questions.

Network architecture An additional analysis will compare
different architectures of the trained artificial network. In this
study, we trained a network to reconstruct images using skip
connections. These connections guarantee a better recon-
struction of output image, but it is not trivial to evaluate what
would happen in the prediction of voxel responses. The previ-
ous analyses can therefore be conducted analysing different
results using different network architectures: with and without
skip connections.
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