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Abstract
Drift-diffusion based models (DDM) have been recently
adapted for analysis of behavior in spatial conflict tasks.
However such DDM extensions are typically difficult to
fit and compare because analytical solutions do not ex-
ist. We use a numerical method to estimate the likelihood
function for fitting a Simon effect DDM to individual sub-
ject data, and use these fits to interpret blood-oxygen-
level dependent (BOLD) responses. We find regions of
BOLD activation that would be difficult to observe with
methods that are not model based.
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Introduction
The Simon effect (Simon & Rudell, 1967) is observed in spa-
tial conflict tasks where the response time of subjects is in-
creased if stimuli are presented in a lateralized manner so that
they are incongruous with the response information that they
represent symbolically.

In this study we fit a Simon effect drift-diffusion model (SE-
DDM), a DDM (Ratcliff, 1978) extended for spatial conflict
tasks (Ulrich, Schröter, Leuthold, & Birngruber, 2015; McIn-
tosh & Mehring, 2017). The model includes specific estimates
of conflict dependent (automatic) response bias and conflict
monitoring based deployment of attention. Both of these pa-
rameters are needed because while a bias term captures the
increased mean response time in conflict trials, the attention
term is needed to capture a compensatory decrease in the
standard deviation.

The power of the DDM is not only that it can model behav-
ior but that it is cast at a level of abstraction where its spe-
cific components are directly interpretable under the assump-
tion that it captures some core principles of decision making
used in the brain. We therefore apply this approach for the Si-
mon effect DDM parameters to interpret the BOLD response
in terms of the overall parameter fits.

Methods
Data was obtained from the OpenfMRI database under an
ODC Public Domain Dedication and Licence (PDDL). Its ac-
cession number is ds000101. Whole-brain functional volumes
were obtained from 21 healthy adults as they performed the
Simon task (Figure 1a).
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Figure 1: Simon task and model (a) Subjects should make
a response with their left hand for a green square presenta-
tion, and right hand response for a red square presentation.
Conflict trials are those where the side to which the square is
presented to is inconsistent with the required response. (b)
Example of a decision variable to bound in the SE-DDM for a
non-conflict trial (parameters defined in text).

We introduce the accuracy coded SE-DDM shown in Fig-
ure 1b based on previous work (McIntosh & Mehring, 2017):

∆x = v · (1+ c ·b ·d)∆t + sξ
√

∆t (1)

x0 = xb(1−2c) (2)

Where the model is fit by finding parameters that maximize
the log-likelihood for each subject’s response time and choice.
The variable x denotes the decision-variable that builds to a
threshold. The stimulus conflict parameter c is set to take a
value of 0 when there is no conflict present or 1 otherwise. Pa-
rameters v, s, and x0 correspond to the drift, noise and starting
point bias, while ξ represents draws from a Normal distribution
and ∆t corresponds to the model step size. Non-decision time
and associated noise are also included. Parameters that are
specific to the Simon task are b, a hypothesized attentional
component that enhances the effective drift on conflict trials
as its duration d increases, and xb a parameter that captures
the initial response bias caused by the Simon effect.

In order to specify the log-likelihood (maximized with a gen-
eralized pattern search algorithm) for a specific set of parame-
ters and conditions we encoded the dynamics of the decision-
variable into a transition matrix which is then evaluated over
time. The transition matrix represents the probability of the



decision-variable at the next time step given the current time
step. Applying it involves discretizing time as well as the
decision-variable x, and iteratively multiplying it with a vec-
tor corresponding to the current probability distribution of the
decision-variable. In the SE-DDM, the transition matrix is fixed
on non-conflict trials, and varies in a time dependent manner
in conflict trials because of the b · d term. Outside the model
threshold, transition matrix values take a value of zero except
for along the diagonal where they take a value of one. The
density function is then calculated by numerical differentia-
tion of the sum of the iterated output above and below the
model threshold. Weighted Akaike information criterion (wAIC)
values were calculated for the SE-DDM and simpler candi-
date models. The (wAIC) can be interpreted as the probability
of that model being the best model among the candidate set
(Wagenmakers & Farrell, 2004).

Standard pre-processing of fMRI data was implemented in
FSL (Smith et al., 2004), and FEAT was used for event-related
analysis. Parameters of interest were added as 100ms long
pulses and motion parameters were added to the model as
confounds of no interest. FEAT was set to use a double-
gamma haemodynamic response function to convolve with a
single set of regressors representing stimuli. Beta values were
extracted after averaging across blocks (level 2), and taken
into MNI space. Threshold-free cluster enhancement (Smith
& Nichols, 2009) implemented in MatlabTFCE1 was used to
generate permutation corrected statistics. Corresponding p-
values then represent the correlation between SE-DDM pa-
rameters and BOLD activation across subjects at each voxel.

Results and discussion
Figure 2a shows the wAIC for the SE-DDM and less complex
candidate models. The model incorporating a conflict depen-
dent bias term was well supported (M3: largest wAIC for 8/21
subjects), and so was the full SE-DDM (M4: largest wAIC for
9/21 subjects). We take this to imply that the full SE-DDM is
the preferable generic model, although some subjects exhibit
low values of b and hence are better fitted by M3.

Correlations with bias xb across subjects (Figure 2b, yel-
low) were present in multiple regions of cortex. Particularly
prominent were precuneus, lingual gyrus and posterior cin-
gulate. Correlations with attention b were found in postcentral
gyrus, insular cortex, anterior cingulate and SMA. Additionally,
we found opercular, planum temporale, and superior temporal
gyrus activation. We hypothesize that the features of conflict
are represented in precuneus and these are made use of by
standard regions of cognitive control such as the supplemen-
tary motor area (SMA) and anterior cingulate. We confirmed
that repeating this analysis with response time or response
time difference between conflict and non-conflict conditions
did not yield any detectable activation at (p < 0.05), highlight-
ing the strength of the model based approach.

In the future we will investigate how these regions integrate
more broadly into a circuit of cognitive control that is likely

1https://github.com/markallenthornton/MatlabTFCE

engaged in the Simon task, as well as using our fitting proce-
dure to test other candidate models for the Simon effect, and
extending them into a hierarchical Bayesian framework.
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Figure 2: Model comparison and BOLD activation (a) wAIC

for candidate models. M1: basic DDM; M2: DDM with at-
tention parameter b; M3: DDM with bias parameter xb; M4:
SE-DDM. (b) Statistically significant (p < 0.05), correlations
between subject parameters and BOLD activation for atten-
tion parameter b (green) and bias xb (yellow).
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