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Abstract

Associative learning theory has a rich tradition of formalized
computational models. With increasingly complex and flexi-
ble models, it is becoming difficult to intuit experiments that
can empirically distinguish between them. To address this is-
sue, we propose a quantitative approach. Using the formalism
of Bayesian experimental design, we tune experimental vari-
ables to maximize the utility of the experiment, i.e., to best
discriminate computational models. We demonstrate the pro-
posed method on two scenarios from the literature on mod-
els of classical conditioning. In both cases, optimized designs
substantially outperform existing canonical designs in simula-
tions: the odds of recovering the true model increase 15 times
in one scenario, and 43 in the other. These results suggest that
formally optimizing associative learning studies has potentially
large benefits in terms of more accurate model selection.
Keywords: Bayesian experimental design, associative learn-
ing

Introduction
Recent concerns over reproducibility and statistical power
in various scientific fields - including cognitive neuroscience
(Szucs & Ioannidis, 2017) - have highlighted the importance
of experimental design. To better address these issues, new
tools for experimental design are being developed different
domains, e.g., psychology (Cavagnaro, Myung, Pitt, & Ku-
jala, 2010), neuroimaging (Daunizeau, Preuschoff, Friston, &
Stephan, 2011), and neurophysiology (Lewi, Butera, & Panin-
ski, 2009).

The study of associative learning is a discipline that has
a rich tradition of theoretical and computational modeling but
lacks formalized tools for experimental design. With today’s
increasingly complex and flexible models of associative learn-
ing, it is becoming difficult to manually devise experiments
that would efficiently discriminate between them. Hence, to
improve associative learning studies, methods of optimizing
experimental designs for accurate model selection are neces-
sary.

In this paper we present a formal computational approach
to this problem, using simulation-based Bayesian experimen-
tal design. The simulation-based approach allows great flex-
ibility in specifying the design problem: varied experiment
structures, model spaces, study goals, and data analysis pro-
cedures can be accommodated. The Bayesian aspect of the
method allows explicit and efficient use of prior knowledge to
guide experimental design, and it facilitates updating of exper-
imental designs upon observing new data.

To illustrate the proposed method, we take the example of
classical conditioning as a special case of associative learn-

ing, and formalize the structure of experiments in a man-
ner that facilitates optimization. In two sets of models drawn
from the classical conditioning literature, we demonstrate that
formally optimized experimental designs substantially outper-
form existing canonical designs in terms of model selection
accuracy. These results suggest that our approach may
greatly improve sensitivity and efficiency for model selection
problems.

Methods
Simulation-based approach to design optimization

The simulation-based Bayesian experimental design frame-
work (Wang & Gelfand, 2002) is outlined in fig. 1.A. In this
framework, the user needs to specify following components
of the optimization problem to make use of the proposed
method. (a) Structure of the experiment, together with a set
of tunable design variables and any constraints on these vari-
ables. (b) Set of candidate models: a set of generative models
which will be used to simulate data and will subsequently be
fitted to the data. (c) Sampling and fitting prior distributions
over model parameters. The sampling prior is used to gen-
erate simulated data, and the fitting prior is used to fit mod-
els to simulated data (Brutti, De Santis, & Gubbiotti, 2014).
The sampling prior reflects experimenters’ prior knowledge,
and can be as informative as desired, whereas the fitting prior
should not be overly informative, so that it does not lead to
foregone conclusions. (d) Utility function reflecting the goals
of the experiment. (e) Analysis procedure which is to be ap-
plied to simulated datasets. (f) Optimization algorithm and its
parameters.

Once the user has fully specified the problem, design op-
timization proceeds by repeating the following steps, which
constitute a single iteration. (1) Current values of design vari-
ables are used together with candidate models and the sam-
pling prior to generate simulated datasets. (2) All the models
are fitted to simulated datasets using the specified analysis
procedure and the fitting prior. (3) The utility function is calcu-
lated based on the results of the fitting procedure (by averag-
ing across simulations), and the estimated utility is passed to
the optimizer. (4) Unless the termination criterion is satisfied,
the optimizer proposes new values of design variables, based
on the utilities of previously evaluated designs.

If we wish to provide users with a flexible method of experi-
mental design, the simulation-based approach is instrumental,
but it can lead to difficult optimization problems. Since the util-



Figure 1: (A) Simulation-based Bayesian experimental design
(see main text for details). Shaded elements denote user in-
puts. (B) Structure of a classical conditioning trial, with transi-
tion probabilities as design variables.

ity function is based on stochastic simulations, it is noisy and
often computationally expensive to evaluate. Moreover, we
usually cannot make strong assumptions about the utility func-
tion (like convexity) and we do not have access to its deriva-
tives. Under these conditions, a state-of-the-art optimization
algorithm is Bayesian optimization (Brochu, Cora, & de Fre-
itas, 2010), and it was therefore our choice for optimizing de-
signs. Bayesian optimization is a global optimization method
which uses a surrogate model of the utility function to decide
which values of optimized variables to evaluate next; this al-
lows it to efficiently optimize over expensive utility functions, at
the cost of continuously updating the surrogate model.

Optimizing the design of associative learning
studies
To optimize associative learning studies we need to define the
structure of such experiments. Here we considered classi-
cal conditioning, as an example of associative learning. One
possible representation of conditioning experiments is shown
in fig. 1.B. A conditioning trial consists of presenting a cue
(conditioned stimulus, CS), followed by an outcome (uncon-
ditioned stimulus, US), which can be aversive or appetitive.
The design of such an experiment can be specified in terms
of cue probabilities (P(CS)), and conditional outcome prob-
abilities (P(US|CS)): these are the design variables which
we seek to optimize. Since allowing the design variables of
each trial to be optimized independently would result in an
intractable, high-dimensional optimization problem, we divide
the experiment into stages. Each stage is a block of trials in

which the design variables are held constants. For our present
purposes, we found that using two stages provided sufficient
potential for design improvement.

Using a specified experimental design, we can stochas-
tically generate a sequence of trials (cues and outcomes),
which serve as an input to a computational model of asso-
ciative learning. Models of associative learning are usually
used to predict agents’ responses to cues (i.e., conditioned
responses, CRs). The simulated datasets are then obtained
by running all the candidate models on the sequence of CSs
and USs, and obtaining the predicted CRs (with added obser-
vation noise). All the candidate models are then fitted to each
of the datasets. In results presented here, we used likelihood
maximization (with the ‘mfit’ toolbox in Matlab) to fit the mod-
els, but fully Bayesian inference with proper priors could also
be used. Based on the quality of fit, models are compared and
the winning model is selected. Here we used the Bayesian In-
formation Criterion (BIC) to compare models, as it takes into
account both the model fit and model complexity. The model
selection was performed on the basis of single simulations,
corresponding to single-subject model comparison, which is
generally more difficult than model selection with a group of
subjects, due to the limited amount of data.

The design utility is calculated based on the results of
model selection. Here we simply used model selection accu-
racy, i.e., the proportion of simulations in which the selected
winning model was the model which actually generated the
data. To search for a design that maximizes the utility, we used
the aforementioned Bayesian optimization (via the ‘bayesopt’
function in Matlab). The obtained design is then validated and
compared to other reference designs by evaluating the utility
function in a larger number of independent simulations.

Results

The seminal Rescorla-Wagner (RW) model (Rescorla & Wag-
ner, 1972) has been successful in explaining many aspects of
associative learning, but there are many phenomena which
it cannot account for. To address some of these short-
comings, various modified versions of the RW model have
been developed. One example is the Kalman Rescorla-
Wagner (KRW) model (Dayan & Kakade, 2001), which is a
probabilistic version of the RW model. Another example is
the hybrid Rescorla-Wagner-Pearce-Hall (RWPH) model (Li,
Schiller, Schoenbaum, Phelps, & Daw, 2011), which allows for
flexible learning rates for each cue (termed “associabilities”).
In light of these developments, we demonstrate the proposed
design method in two scenarios in which the RW model is
compared against its variants.

In Scenario 1, based on the simulation study of Kruschke
(2008), RW and KRW models are compared using the back-
ward blocking experimental design. Therefore, we took the
backward blocking design as the reference design, against
which we compared the formally optimized design. Scenario 2
is based on the empirical study of Li et al. (2011), which com-
pared the RW model (labeled RW(V )) and three variants of



the RWPH model. The RWPH models differed by the quantity
which was emitted as the conditioned response: associative
weights (RWPH(V )), associabilities (RWPH(α)), or a mixture
of weights and associabilities RWPH(V +α). The study used
a reversal learning to obtain differential responses between
the models, and we used this experimental design as the ref-
erence design for comparing the optimized design.

In both scenarios, we ran the Bayesian design optimization
for 285 iterations. In each iteration the utility function was eval-
uated using 32 datasets simulated from each model. Using
32 CPU cores at 2.5 GHz, total optimization times for Sce-
nario 1 and 2 were 4.1 h and 17 h, respectively. In Scenario
1, sampling priors for RW and KRW models were point pri-
ors placed at the parameter values used by Kruschke (2008).
Similarly, in Scenario 2, we used a point prior placed at the es-
timated parameter values provided by Li et al. (2011) for the
RWPH(V +α) model, and for the other models we used a sub-
set of these parameters since the models are nested. Finally,
we evaluated the optimized designs and reference designs in
additional 256 simulations per each model-design combina-
tion. We also computed the responses of the models fitted
to these simulated datasets. For visualization purposes, the
responses were computed for all cues at each trial (although
only one cue is observed by the model during data genera-
tion), and the responses were averaged across simulations.

For Scenario 1, model selection accuracies obtained with
the reference backward blocking design and the optimized de-
sign are presented in fig. 2.A The results show that the proba-
bility of selecting the correct model increased from 56.64%
(95% CI: [52.22%, 60.98%]) for the reference design, to
98.24% (95% CI: [96.69%, 99.19%]) for the optimized design.
This improvement is mostly due to simulations in which the
KRW model is the true model: in the simulations with the ref-
erence design, both models can adequately fit the data, but
the RW model has lower complexity, hence it is often erro-
neously selected as the winning model.

For Scenario 2, comparison of model selection accuracies
obtained with the reference reversal learning design and the
optimized design is shown in fig. 2.D. Model selection accu-
racy improved from 59.38% (95% CI: [56.29%, 62.40%]) for
the reference design, to 95.51% (95% CI: [94.05%, 96.69%])
for the optimized design. Largest contribution to the accuracy
improvement stems from simulations in which RWPH(V +α)
is the true model: using the reference design this model is of-
ten confused with the simpler RW(V ) model, which is not the
case with the optimized design (see inset of fig. 2.D).

Comparison of the reference and the optimized designs in
both scenarios shows that the optimized design is less parsi-
monious (fig. 2.B and fig. 2.E), but it generally results in more
distinct model responses (fig. 2.C and fig. 2.F). Exception to
this are responses in Scenario 1, with RW model as the true
model. In this case, even with the optimized design, the re-
sponses remain similar. However, the similarity of responses
here is not problematic, because the RW model will be cor-
rectly selected due to its lower complexity, when compared

with KRW. This shows that the optimization took into account
not only the model space and the priors, but also the specifics
of the applied analysis procedure.

Discussion

We propose a novel method for improving studies of associa-
tive learning using simulations to evaluate experimental de-
signs, and Bayesian optimization to tune them. In two scenar-
ios drawn from the classical conditioning literature (Kruschke,
2008; Li et al., 2011), we demonstrate the effectiveness of the
proposed method. In optimizing the designs, we explicitly take
into account the prior knowledge about the problem, the goals
of the study, and the analysis procedures, allowing us to ob-
tain statistically more powerful designs. In the two presented
scenarios, we chose single-subject model selection accuracy
as the goal, and the optimized designs outperformed man-
ual designs by a large margin: the odds of correctly identify-
ing the true model increased 42.8 times in one scenario (RW
vs. KRW) and 14.5 times in the other (RW vs. RWPH).

An important caveat to these results is that they indicate
the potentially obtainable improvements. In present simula-
tions the sampling prior is a point prior on model parameters,
and the same values are used both in design optimization
and evaluation. Therefore, the accuracy results obtained here
should be understood as upper bounds, because in real use-
cases the data-generating process is unlikely to have param-
eter values that precisely coincide with the ones used when
planning the experiment. Nevertheless, the presented results
suggest that there are large potential benefits in optimizing
experimental designs. These benefits can be realized by it-
erating between experimentation, updating sampling priors,
and optimizing designs, between subsamples of subjects, be-
tween individual subjects, or even within subjects.

There are also many future venues for further validating the
proposed method and extending its scope. Since in practice
we usually do not have point priors on the parameters of can-
didate models, it will be useful to investigate how does the per-
formance of optimized designs change when prior knowledge
is vague or deviates strongly from actual parameter values. It
will also be important to extend the method to other potential
experimental goals, such as model selection with hierarchi-
cal data (e.g., groups of subjects), or the goal of accurately
estimating parameters in a single model, rather than select-
ing between multiple models. In this paper we have used
a simple experimental structure with a small number of tun-
able parameters, but developing more complex experimental
structures and still obtaining tractable optimization problems
will be a crucial challenge. For such complex experiments it
might be advantageous to use adaptive design optimization
(Cavagnaro et al., 2010). Here the algorithm would not opti-
mize the whole experiment at once, but would rather optimize
the design variables of each trial on the fly, which results in a
smaller number of design variables to be optimized.

Computational cognitive neuroscience has a rich modeling
toolbox at its disposal, but a comparable set of methods for



Figure 2: Comparison of reference and optimized designs. (A,D) Model selection accuracy, (B,E) design variables’ values, and
(C,F) model responses for Scenarios 1 and 2, respectively. Inset in (D) shows the confusion matrix between models.

experimental design is lacking. We believe that the formal de-
sign optimization approach presented here is a valuable ad-
dition to this toolbox. The outlined method has potential to
improve not only basic research on associative learning, but a
similar approach could have substantial translational value in
the nascent field of computational psychiatry where increas-
ing sample size to increase statistical power is often not an
option. In this context, formal optimization could be used to
develop accurate and efficient behavioral assays which would
link computational models and their parameters to clinically
relevant variables.

References
Brochu, E., Cora, V. M., & de Freitas, N. (2010). A Tuto-

rial on Bayesian Optimization of Expensive Cost Func-
tions, with Application to Active User Modeling and
Hierarchical Reinforcement Learning. arXiv preprint
arXiv:1012.2599.

Brutti, P., De Santis, F., & Gubbiotti, S. (2014). Bayesian-
frequentist sample size determination: a game of two
priors. METRON, 72(2), 133–151.

Cavagnaro, D. R., Myung, J. I., Pitt, M. A., & Kujala,
J. V. (2010). Adaptive Design Optimization: A Mutual
Information-Based Approach to Model Discrimination in
Cognitive Science. Neural Computation, 22(4), 887–
905.

Daunizeau, J., Preuschoff, K., Friston, K., & Stephan, K.
(2011). Optimizing Experimental Design for Comparing

Models of Brain Function. PLoS Computational Biology ,
7 (11), e1002280.

Dayan, P., & Kakade, S. (2001). Explaining away in weight
space. In Advances in neural information processing
systems 14 (pp. 451–457).

Kruschke, J. K. (2008). Bayesian approaches to associative
learning: From passive to active learning. Learning and
Behavior , 36(3), 210–226.

Lewi, J., Butera, R., & Paninski, L. (2009). Sequential Op-
timal Design of Neurophysiology Experiments. Neural
Computation, 21(3), 619–687.

Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw,
N. D. (2011). Differential roles of human striatum and
amygdala in associative learning. Nature Neuroscience,
14(10), 1250–1252.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian
conditioning: Variations in the effectiveness of reinforce-
ment and nonreinforcement. Classical Conditioning II
Current Research and Theory , 21(6), 64–99.

Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assess-
ment of published effect sizes and power in the recent
cognitive neuroscience and psychology literature. PLOS
Biology , 15(3), e2000797.

Wang, F., & Gelfand, A. E. (2002). A simulation-based ap-
proach to Bayesian sample size determination for perfor-
mance under a given model and for separating models.
Statistical Science, 17 (2), 193–208.


		2018-08-20T14:49:40-0500
	Preflight Ticket Signature




