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Abstract
Sequential predictions are ubiquitous in a learning
agent’s existence. In order to devise efficient responses
in a dynamic environment, one needs to build an internal
representation of the latent dynamics of the environment.
Humans have been shown to create dynamical models
such as intuitive physics that approximate the laws of
Newtonian physics and are able to reason about their
model in terms of formulating new predictions or imagin-
ing hypothetical situations. However, subject-by-subject
differences in temporal predictions resulting from varia-
tions in subjective internal models and individual learn-
ing paths have remained unexplored due to the immense
difficulty related to inferring dynamical subjective repre-
sentations. Cognitive Tomography has been proposed
to discover static internal representations from discrete
choices. We extend this method in two critical ways:
1, We aim to infer internal representations from a richer
set of behavioral measures, specifically we use reaction
times; 2, Our goal is to infer a dynamical representa-
tion. We demonstrate its utility by predicting reaction
times and choices of human participants in a probabilistic
learning task on a trial-by-trial basis. Inferred behaviour-
based trial-specific subjective predictions can be directly
used to test theories of neural underpinnings of compu-
tations in physiological and imaging data.
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Introduction
Perception has been well characterised by Bayesian ideal ob-
server models where prior beliefs are combined with incoming
sensory data according to the rules of Bayesian inference to
discover the latent causes underlying observations. In most
of these cases, group-level behaviour is well accounted for
by models that have generic prior beliefs. However, in com-
plex novel tasks, the momentary representation is expected
to vary greatly among individuals and the subject-averaged
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Figure 1: Ideal observer model and Cognitive Tomography.
The participant assumes a model for the latent dynamics and
a model relating their observations to the latent states. They
use these components to update their beliefs over the cur-
rent state of the observed system and then generate predic-
tions for the upcoming stimulus. The median and standard
deviation of reaction times decreases linearly with log sub-
jective probability (R. Carpenter & Williams, 1995). Cognitive
Tomography is the method of inverting this generative model.
We inferred the internal representations of individuals from the
stimulus sequences and the reaction times.

model may be of different form than any of those of the indi-
viduals. Therefore, in order to achieve a detailed understand-
ing of learning in a complex environment, we need to extract
individual representations with high fidelity.

Cognitive tomography (Houlsby et al., 2013) was recently
proposed for inferring multidimensional, detailed individual
representations from behavioural data. In its original form, it
utilises binary/ternary response data and infers static individ-
ual representations for a well trained class of stimuli, human
faces. Here we extend cognitive tomography with two major
goals in mind that broadens the scope of the original model:
First, reaction times can be directly used, enabling the inclu-



sion of substantially richer behavioral data; Second, a method
for inferring dynamical and potentially evolving internal mod-
els is developed. The developed method retains the capacity
to infer individualised internal representations and to infer an
internal model that is not directly linked to the task the model
was trained on. We validate our approach by predicting reac-
tion times on a trial-by-trial level. Critically, while our model is
fitted solely on trials with reaction times in correctly executed
trials, the inferred internal models also predict the mistakes of
participants above chance. Our method provides a new way
to assess the acquisition of internal models in a dynamical
setting on an individual level.

Ideal observer model
Learning a complex dynamical model is a challenging task. In
principle, if one knows the latent dynamics of the system and
how their observations relate to the latent dynamics, they can
use a filtering technique to track the changes in the latent state
of the system and formulate predictions (e.g. Kalman-filters).
However, in general one needs to infer the latent dynamical
model as well. In a discrete-state world, an exact solution can
be given by a Hidden Markov Model (HMM) with a given (pos-
sibly infinite) number of states. Recently, Glaze, S Filipowicz,
Kable, Balasubramanian, and Gold (2018) demonstrated that
a two-state hidden Markov model is an adequate model for
internal representation in a simple task. In a general setting,
however, the number of states that govern the dynamics of
the observations needs to be discovered by the observer and
therefore a flexible probabilistic model is required, in which the
latent states are learned from data. We use a non-parametric
version of HMM, the infinite Hidden Markov Model (iHMM)
(Gael, Saatci, Teh, & Ghahramani, 2008), which has been
demonstrated to be effective under these circumstances.

An internal model entertained by an ideal observer can be
characterized by three factors: the assumed latent dynam-
ics, the generative model of their observations and the mo-
mentary beliefs about the current state of the system (Fig 1.
Internal model). To link subjective beliefs with behavioral re-
sponses a further component is required. An important work
by R. Carpenter and Williams (1995) established that saccadic
reaction times for correct trials in a probabilistic viewing task
were reciprocal normally distributed with fixed variance and
median linearly related to the negative log subjective proba-
bility (Fig. 1 bottom left). Harris, Waddington, Biscione, and
Manzi (2014) argue that manual choice reaction times may
also be modelled using reciprocal normal distribution. Our
cognitive tomography model uses this generative model to in-
fer an internal representation (and its dimension) from the pre-
sented stimulus sequence and the measured reaction times
(Fig. 1. Cognitive Tomography).

Method
Experiment

We use the Alternating Serial Reaction Time Task (ASRT) to
test if a dynamical internal model can be inferred from reac-

tion time data. In this paradigm, subjects have to manually
respond to a stimulus (dog) appearing in one of four locations.
The sequence of locations have a structure: in even trials, the
stimulus follows a predetermined sequence, while in odd tri-
als, the stimulus appears in any of the four locations with equal
probability and independently of all other trials. The statistical
structure is unknown to participants and they are instructed
to respond to the stimulus as fast and as accurately as possi-
ble. After the experiment they reported no explicit knowledge
about the statistical structure. The trials are organised into
blocks of 80 and 25 blocks are administered with 21 individual
participants. The task is well described by an 8-state Hidden
Markov Model where there is a non-stochastic latent dynamics
repeating the sequence: Pattern1, Random1, Pattern2, Ran-
dom2, Pattern3, Random3, Pattern4, Random4.

Inference of Internal Model
There are two major challenges we aim to address. First, the
model describing the observer’s model of the sequence has to
be a flexible model able to solve general sequential prediction
problems. In theory, any discrete-time sequence can be mod-
elled using Hidden Markov Models. The major challenge is
that the number of latent states in such a model needs to be in-
ferred as well. Recent advances in machine learning allow for
efficient solution of this problem (Gael et al., 2008), being able
to simultaneously infer the number of latent states, the latent
dynamics as well as the generative model for observations. A
crucial feature of their solution is that they assume an infinite
number of latent states, finitely many of which appear in a fi-
nite data set. This non-parametric approach allows learning
arbitrarily complex models with growing data size. The key
idea in their solution is to use slicing, that is, in each step, they
carve out of the infinite space of possible models a tractable
part and do inference on that part. Consequently, once par-
ticipants formulate an estimate of the model, they can filter
their beliefs over the current state of the world using the la-
tent dynamics and the generative model of the observations.
As a point of reference, the algorithm described by Gael et al.
(2008) can learn the true generative model of the experiment
we conducted from around 200 observations.

The second part of the challenge is to infer the complex, po-
tentially high-dimensional internal model of participants from
a sequence of stimuli and behavioral responses (noisy reac-
tion times in our specific case). We can formalise their filtered
beliefs, models and the way these generate the observed re-
action times as a probabilistic program which repeats the fol-
lowing steps: according to their current beliefs, they calculate
expected probabilities for the location of the upcoming stimu-
lus, then depending on their parameters, they produce a reac-
tion time to the upcoming stimulus (R. Carpenter & Williams,
1995). Then, they update their beliefs over the system’s state
by taking into account the currently observed stimulus and
projecting the evolution of the system into the next time-point
using their latent dynamics model. Hence, we obtain a full
generative model of their reaction time sequence. We, re-
searchers, infer their internal models by inverting this genera-



tive model. Since the researcher’s posterior (over the partic-
ipant’s model) is high-dimensional and highly structured, we
used Hamiltonian Monte Carlo implemented in STAN (B. Car-
penter et al., 2017). The Hamiltonian Monte Carlo steps are
wrapped into a Gibbs-sampler that is sampling the slicing pa-
rameter and the rest of the parameters in an alternating fash-
ion.

We tested our algorithm on synthetically generated reaction
time data with reaction time parameters based on the results
of R. Carpenter and Williams (1995). The algorithm could re-
cover the ground truth subjective probabilities for up to 0.97
correlation.

Results

First, we contrasted the performance of the dynamical model
inferred by cognitive tomography with a classical measure de-
veloped to assess learning in the ASRT task. Specifically, we
compared the amount of variance explained by cognitive to-
mography and that explained by the so called triplet model,
essentially a trigram model of the input sequence (Howard &
Howard, 2001; Janacsek & Nemeth, 2012). We split the 25
blocks of trials into five epochs of equal length and inferred
the participants’ internal models on each of the five epochs.

Reaction time data was fit using data from one epoch and
tested on the following epoch (Fig. 2, left). Exact corre-
spondence between subjective probabilities and reaction time
yields a correlation of −1. Deviation from this value is not
necessarily the result of discrepancy in the fit of the gener-
ative model and the actual internal model of the participant,
but the fact that reaction times for individual trials are shown
instead of trial averages, which also introduces variance. For
all but one participant (Fig. 2, right), our model had better
correlation coefficient on a test set than that of the triplet (or
trigram) model which states that participants make predictions
based on the previous two stimuli, by identifying the most fre-
quent stimulus location following the previous two observed
locations.

Next, we aimed at testing the inferred dynamical internal
model in a substantially different way: our goal was to demon-
strate that the internal model is indeed capable of predicting
behaviours that are novel to the model. Critically, the model
was trained on reaction times of only those trials to which
the participant responded correctly. Subsequently, we tested
whether our model forms meaningful predictions for partici-
pants’ choices in trials where they committed mistakes. In
those trials, where the location of the stimulus is indepen-
dently and randomly generated (with equal probability appear-
ing in any of the positions), hence not predictable from previ-
ous stimuli, we expect both reaction times and accuracy to
be modulated solely by the participant’s internal model. Our
model predicts lower subjective probabilities for those random
trials that the participant eventually missed (Fig. 3, left). More-
over, we can predict the mistakenly pressed button above
chance (for all mistakes on all types of trials, Fig. 3. right;
binomial test on first column: p < 0.01), based on the internal
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Figure 2: Left: Example reaction times of one participant’s last
epoch (400 trials) against our model’s log predicted probabil-
ities trained on the previous epoch. RTs shown mean ±3 sd
for clarity. Corr: −0.49. Right: Correlations for all individuals’
models fitted on the penultimate epoch and correlated with
the final epoch. On the x axis, the performance of the model
based on trigram predictions. For all but one participant our
model has better trial by trial predictions on the test set.

model’s predictions. Crucially, we achieve this using no extra
parameters, simply by taking the location of the stimulus with
largest subjective probability given by the model.
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Figure 3: Left: Mean of log subjective probabilities given by
the inferred internal model on random trials on a test set.
(Model trained on correct trials of the last epoch, predictions
are made on missed and correct trials). Dots represent partic-
ipants with 2 s.e.m. For most participants, the model predicts
lower subjective probability to those random (unpredictable)
trials which they eventually miss. Right: Ranks of participants’
choices on missed trials according to the predictive probabili-
ties of the potential incorrect options. The model predicts par-
ticipants’ actual responses (first column shows the fraction of
incorrect choices that had the highest subjective probability
according to the internal model) significantly above chance.

Finally, we tested our model at assessing the learning curve
of the internal model acquisition. We evaluated how much
the internal model changes over time by measuring its per-
formance on different epochs (Fig. 4), which provides an in-
sight into how much the model inferred in one epoch devi-
ates from the models maintained in other epochs. Compar-
ison of the late model (trained on epoch four) with the early



1 2 3 4 5
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

M
od

el
 p

er
fo

rm
an

ce
 (

co
rr

.) Early model
Late model
Final model

Figure 4: Model performance (negative correlation) of internal
models fitted on three different epochs of the experiment (1, 4,
5, for the early, late, final models, respectively). Performance
of models decrease with increasing temporal distance from
the trained epoch. The model inferred on the first five blocks
is inferior to the models inferred at late parts on the late parts
of the experiment. Open circles show training performance,
filled circles show test performance. Part of the difference be-
tween open and filled circles is due to train-test error differ-
ence therefore relevant comparisons concern those between
filled circles. Error bars show 1 s.e.m. over participants

model (trained on epoch one) reveals that the late model sur-
passes the early model on the final part of the experiment
(t(20) = −3.98 p < 0.01). Continuity of prediction reveals
a gradual change in the internal model. Note, however, that
subject-averaged learning curves can hinder the evolution of
learning in individuals and tends to provide overly smooth tun-
ing curves. While this analysis promises to reveal learning
curves on a subject-by-subject basis, it is the subject of future
analysis to reveal individual learning curves.

Conclusions

In this study we extended cognitive tomography to infer a
dynamical internal representation and to the use of reaction
times. We demonstrated that it can predict reaction times in
a probabilistic sequence learning task and surpassed the pre-
viously used model by a substantial margin. We also demon-
strated that the internal model inferred for individuals can be
also used to reason about behaviour not directly trained on,
similar to the concept of designing across-task predictions.
The model provides subjective probabilities in individual tri-
als and we propose that these explicit trial-by-trial predictions
can be used as correlates to physiological or imaging data.
The model described here can be easily extended to other be-
havioural measures, for example eye-movements, which can
help investigate acquired internal models in a wide spectrum
of tasks.
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O.). Image of head used in Fig. 1. was created by Svelte UX,
downloaded from the Noun Project.

References
Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B.,

Betancourt, M., . . . Riddell, A. (2017). Stan: A probabilis-
tic programming language. Journal of Statistical Software,
Articles, 76(1), 1–32. doi: 10.18637/jss.v076.i01

Carpenter, R., & Williams, M. (1995). Neural computation of
log likelihood in control of saccadic eye movements. Nature,
377 , 59–62.

Gael, J. V., Saatci, Y., Teh, Y. W., & Ghahramani, Z. (2008).
Beam Sampling for the Infinite Hidden Markov Model. Pro-
ceedings of the 25th international conference on Machine
learning, 1088–1095.

Glaze, C. M., S Filipowicz, A. L., Kable, J. W., Balasubra-
manian, V., & Gold, J. I. (2018). A biasâvariance trade-
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