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Abstract

Storing knowledge of an agent’s environment in the form
of a probabilistic generative model has been established
as a crucial ingredient in a multitude of cognitive tasks.
Perception has been formalised as probabilistic inference
over the state of latent variables, whereas in decision
making the model of the environment is used to predict
likely consequences of actions. Such generative models
have earlier been proposed to underlie semantic mem-
ory but it remained unclear if this model also underlies
the efficient storage of experiences in episodic memory.
We formalise the compression of episodes in the norma-
tive framework of information theory and argue that se-
mantic memory provides the distortion function for com-
pression of experiences. Recent advances and insights
from machine learning allow us to approximate semantic
compression in naturalistic domains and contrast the re-
sulting deviations in compressed episodes with memory
errors observed in the experimental literature on human
memory. Semantic compression establishes a framework
to provide a normative account for a spectrum of memory
distortions in humans.
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Introduction

Given the physical constraints on memory resources for the
human brain, verbatim storage of all sensory experience is un-
feasible. The normative framework for analysing this problem
is provided by information theory, where efficient compression
into memory traces hinges on the agent being able to priori-
tise information according to its relevance. In information the-
ory these priorities are represented by the distortion function,
which characterises the degree to which a particular form of
distortion of the original experience is acceptable to the agent.
While the distortion function is a critical component of efficient
compression, the theory is agnostic about its specific form.
Thus, efficient compression raises the question: What is the
appropriate distortion function for human memory, that is, from
a continuous stream of experience, how does the human brain
determine what to remember and what to forget?

Storing knowledge of an agent’s environment in the form
of a probabilistic generative model has been established as
a crucial ingredient in a multitude of cognitive tasks. Per-
ception can be understood as probabilistic inference over the
state of latent variables, where prior knowledge is integrated
with noisy and ambiguous observations. In decision making,

the model of the environment is used to predict likely conse-
quences of actions, enabling the agent to find the action pol-
icy leading to maximal rewards. Learning is readily formalised
as building a probabilistic model of the environment based on
observations. Following previous research, we consider es-
tablishing a statistical model of the environment the domain of
semantic memory and formalise it as a probabilistic genera-
tive latent variable model of the environment (Kali & Dayan,
2004; Hemmer & Steyvers, 2009; Nagy & Orban, 2016).

In addition to maintaining a probabilistic model in seman-
tic memory, previous research has pointed out that retain-
ing rich representations of specific experiences is also nec-
essary (Nagy & Orban, 2016; Kumaran, Hassabis, & McClel-
land, 2016; Lengyel & Dayan, 2009). This form of memory,
usually termed episodic memory, is an expensive represen-
tational format, which necessitates compression. We argue
that in the case of memory, similar to perception, it is the in-
ferences regarding the causes underlying sensory experience
that is most relevant for the organism, which is precisely the
information captured by the latent variables of semantic mem-
ory. Therefore, the information contained in the latent vari-
ables is what memory should prioritise when resources are
constrained. In formal terms, we propose that semantic mem-
ory underlies the compression of episodes through providing
the distortion function for episodic memory, a process we term
semantic compression.

Empirically, the distortion function of an information com-
pressing system becomes apparent in the pattern of mem-
ory errors that it produces. In the case of human memory,
an extensive body of work has shown that it is indeed far
from a carbon copy of sensory experience. Rather than be-
ing random noise however, these memory errors show robust
and systematic biases. Such systematic biases are though
to reflect rational adaptations to computational resource con-
straints (Schacter, Guerin, & St Jacques, 2011). Making this
assumption explicit, we formalise semantic compression in the
normative framework of lossy compression. This formalisa-
tion provides an opportunity for a unifying normative explana-
tion of a wide variety of memory effects. Recent advances
in machine learning yielded efficient tools to learn generative
models of complex stimuli. In this study, we harness these
advances to compare biases of humans in a recall task us-
ing naturalistic sketch images (Carmichael, Hogan, & Walter,
1932) with distortions introduced by semantic compression.



Rate distortion theory

The branch of information theory that deals with lossy com-
pression is called rate distortion theory (RDT). A central in-
sight of RDT is that while optimal compression is based on
a knowledge of the statistics of the data, there is no single
optimal encoding: a trade-off between the memory resources
that are used for storing a given observation (rate) and the
amount of distortion in the recalled memory exists. For any
rate constraint, a minimal expected distortion can be estab-
lished, defining the RD curve. The curve can be computed by
minimising
L =min D+ BR.

Any compression method can be associated with a point on
the RD plane, with optimal algorithms lying on the RD curve.
Assuming the curve is strictly convex, every point on it can
be identified with a single value of B, corresponding to a par-
ticular point on the rate-distortion trade-off continuum. The
distortion term, the cost associated with each possible alter-
ation of the memory trace, is defined as the expected value
of the distortion, d, between the original, x, and the recon-
structed observation, £, so that D = E,[d(x,%)]. An optimal
lossy compression algorithm will selectively prioritise informa-
tion such that alterations that are inconsequential according
to this measure are discarded first. However, the distortion
measure, d(x,£), is left unspecified in RDT.

RDT was later extended to guide the choice of distortion
function, in the information bottleneck (IB) method (Tishby,
Fernando, & William, 1999). The IB method introduces the
idea of relevant quantization: they argue that distortion should
be defined so as to maximise predictive ability regarding the
quantities that we are interested in. The relevant information is
then defined by the mutual information between the encoding
(Z) and the relevant quantities (Y) so that the loss to be min-
imized becomes L;p = —I(Z,Y) + BI(X,Z). The IB method
is not feasible to apply to high dimensional naturalistic data,
however a variational approximation to the objective called the
deep variational information bottleneck (DVIB) was developed
in Alemi, Fischer, Dillon, and Murphy (2016). Here we use an
unsupervised version of this objective,

L(8,0,x) = Eyogy (ofx) (log po(x[z)) — B- KL(go(2lx) | pe(2)),

where D corresponds to the first term (also called the recon-
struction term) and R to the negative of the second term (also
called the regularisation term) of the objective. Notably, Alemi
et al. (2016) have shown that this also corresponds to the
loss function of an approximate generative model called the
B-VAE, thus providing a connection between generative mod-
els and rate distortion theory.

Semantic compression

Efficient compression is based on a knowledge of statistics
of the environment. We argue that semantic memory, viewed
as a probabilistic generative model, represents the best esti-
mate the brain has of such environmental statistics. Further-
more, it provides latent variables that are shaped by stimulus
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Figure 1: Learned representation. Some component means
are presented along with samples. Intra-component differ-
ences are deemed smaller by the learned distortion function
than inter-component differences, capturing human-like se-
mantic distortions.

statistics, rewards, tasks, and predictive success. These vari-
ables include lower level acoustic or visual features such as
phonemes, or objects as well as abstract concepts such as
what constitutes a good chess move or melody. In addition,
they contain the information relevant for predicting future ob-
servations. As a consequence, the latent variables summarize
the relevant part of sensory information for the brain and we
propose that this is precisely the information that should be
prioritised when memory resources are constrained.
Representation of sensory experience in semantic com-
pression occurs through inference of latent variables, z, which
are then encoded as the memory trace:
é(xobs) = Oz[p(Z | X = xObS)]y
where O, stands for a point estimate of the posterior distribu-
tion, such as the maximum a posteriori estimate. This formu-
lation of the encoding process gives an opportunity to assess
many of the distortions in memory associated with schematic
biases and gist based errors. The encoding into a posterior
over latent variables can be understood as compressing sen-
sory experience into sufficient statistics for the latents, which
is used to explain seemingly paradoxical results in the auditory
cortex (McDermott, Schemitsch, & Simoncelli, 2013). Seman-
tic compression also implies that the level of difficulty of infer-
ence affects the accuracy of the recalled memory trace. Clas-
sical memory experiments have shown that providing even
a concise context which aids the interpretation of otherwise
strongly ambiguous stimuli can greatly increase retention ac-
curacy (Bower, Karlin, & Dueck, 1975; Bransford & Johnson,
1972). Finally, the statistical model of a particular stimulus set
affects the efficiency with which the relevant statistics can be
extracted from observations. Therefore, expertise in a cogni-
tive domain results both in a better estimate of the observation
statistics and in more efficient compression due to represen-
tations that are better suited to tasks in that domain. This ex-
plains varying recall performance for stimuli depending on how
well a particular stimulus conforms the environmental statis-



a reconstruction

input 0.3 06 07 08 10

o0 o0 oo oo oo ‘00 F s ©°
A A W D W 00 T 4\
oo oo 00 oo oo ‘oo = . 0
- (=0 = = 00’ Z\p C/<(O =
vt Gy & wv 00— GO O
&= = (= 00 & oo  ex 07 AN

‘ (=
5 input
0=0 ‘o’ 5
oo 00’ 3
20 ‘oo’
o oY (0,H) ¢ \oa/
oo OO
o—0 b‘O/ »

rate

Figure 2: Reconstruction at different rates. a) Top row: value of 3. Reconstruction: samples from the model with the given input
in the left column. Generation: samples from the model without inputs. With increasing B, we lower the rate of compression: in
reconstruction, idiosyncratic details of the input are lost. At the same time generation improves but also becomes less variable, at
B = 10 producing one prototypical example. b) Blue curve: theoretical limit for best compressing models. Red curve: RD curve
achievable by restricting posteriors to a parametric family such as in the sketch-rnn model. With increasing rate, compression is
more faithful, while with decreasing rate, details are lost, rectangular shaped eyeglasses turn into more generic circular shaped
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tics (Baddeley, 1971), and performance differences between
experts and non-experts (Gobet & Simon, 1996).

Recall of an observation in semantic compression is a re-
constructive process. Since semantic memory is assumed to
be a generative model over observed variables, it can be used
to recreate an experience based on the memory trace by con-
ditioning on the stored values for latent variables. This results
in a predictive distribution over observable variables, a point
estimate of which can be regarded as the representation point
for the particular value of the latent:

f(x()hs) = Ox [p(x ‘ = Z(X()bS))]

In case information about some features were lost during en-
coding, semantic memory can complement available informa-
tion by relying on the prior distribution. This results in a gist-
like reconstruction of the stimuli, where values of not retained
features are substituted with what is likely to have been part
of the observation. The DRM effect (Roediger & McDermott,
1995) and boundary extension (Intraub & Richardson, 1989)
are good examples of such false memory effects.

Figure 3: Memory distortions. a) Category infor-

wmwen (O=C)  Mation manifest in priors over the latent features
we X Z (red and blue lines). Combination with the like-

lihood term of the observation (grey dotted line)
o L

induces biases: recall without category label
(grey dot) becomes distorted (red and blue dots)
b) Examples from Carmichael et al. (1932). Mid-
dle column: figures shown to subjects. Left and
right columns: distorted reconstructions by par-
ticipants who received the corresponding cate-
gory label. c) Our reconstruction of the memory
distortion.
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Results

In order to investigate whether semantic distortion can enable
efficient compression at multiple rates along the RD curve
and demonstrate how it can explain systematic biases in hu-
man memory, we present a computational approximation of
semantic compression in the domain of sketch-drawings un-
der conditions where memory biases are known to emerge
in human observers Carmichael et al. (1932). In this classi-
cal experiment, intentionally ambiguous hand drawn sketches
of objects from common categories were presented to sub-
jects who were asked to reproduce these images after a given
amount of delay (Fig. 3b). Two separate groups of participants
received different category names along with the drawings.
Depending on the categorical cue, systematic biases were in-
troduced in reproduced images.

As an approximation of the semantic model for sketch draw-
ings we use the sketch-rnn architecture (Ha & Eck, 2017) and
the B-VAE objective. We train this model on a dataset contain-
ing millions of sketch drawings of specific object categories
that has recently become available in the Google QuickDraw



dataset (Ha & Eck, 2017). Since training of sketch-rnn is un-
supervised, category labels can not be integrated during in-
ference. We introduced these categories by fitting a mixture
of Gaussians model on top of the latent representation. While
the high dimensionality of the latent space precludes direct vi-
sualisation of the learned distortion, generating drawings from
these components offers a glimpse into the kind of observa-
tions that are close in the semantic space (Fig. 1).

Fitting the model at different 3 values, corresponding to dif-
ferent trade-offs between rate and distortion, results in qualita-
tively different behaviours (Fig. 2). At high rates compression
behaves similarly to a completely episodic system: the latents
attempt to capture idiosyncratic details of the input, however
there is very limited generalisation and the semantic model
learned in this regime is not capable of producing realistic un-
conditional samples. At lower rates, recall becomes similar to
a completely semantic system: it leans increasingly on recon-
struction via the predictive semantic model rather than retain-
ing details of the observation. Note, that in the extreme case of
B = 10, latents become independent of the actual observation,
generating a likely observation based on the marginal statis-
tics of the data. This behaviour follows from the fact that maxi-
mum likelihood training and thus the ELBO objective does not
give an explicit constraint on the latent representation, for fur-
ther details see Alemi et al. (2017).

To contrast distortions introduced by semantic compression
with reproduction biases revealed by the Carmichael exper-
iment, we trained the model on sketches of specific object
pairs and selected potentially ambiguous sketches. When
performing inference, we incorporate the category label pro-
vided in the experiment by conditioning on the sketch being
generated from the category. According to the principles of
Bayesian inference the category prior introduces a bias in the
encoding (Fig 3a), which will also be apparent in the gener-
ated drawing (Fig 3c).

Discussion

We gave a normative argument for compressing events in
human memory using the latent variables of semantic mem-
ory formalised as a probabilistic generative model of the en-
vironment. We argued that in the framework of information
theory this corresponds to using the conditional likelihood of
the model as a distortion function. This correspondence en-
abled us to integrate recent results in machine learning with
memory research to make predictions on complex, naturalistic
data. Our formalisation can parsimoniously explain a variety
of memory biases, and here we gave a detailed demonstration
of a classic example in the domain of reproduction of sketch
drawings.
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