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Abstract: 

Neural signals can be measured experimentally by 
estimating levels of brain activity, variability, and 
functional connectivity. However, these neural 
measures have often been studied independently from 
one another, making it difficult to infer precise 
underlying causes of the phenomena. Here we provide 
a mechanistic framework that relates activity, 
variability, and functional connectivity in neural mass 
models. We hypothesized that statistical estimates of 
activity, variability, and functional connectivity are 
emergent properties describing network interactions 
governed by an underlying dynamical system. In testing 
this hypothesis we provide a dynamical systems 
mechanism to explain how evoked changes in activity 
affect changes in moment-to-moment variability and 
functional connectivity. We demonstrate that a simple 
network model can reproduce emergent statistical 
phenomena widely described throughout the task-
evoked and dynamic functional connectivity literature. 
Further, our model suggests that evoked activity shifts 
the system’s attractor dynamics, inducing changes to 
the moment-to-moment variability and functional 
connectivity within the network. Together, the proposed 
mechanisms provide direct links between intrinsic and 
evoked activity, variability, and functional connectivity 
under a single dynamical systems framework. 
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Evoked activity changes moment-to-
moment variability and functional 

connectivity in minimal network models 

Many studies have used measures of brain activity, 
moment-to-moment variability, and functional 
connectivity (FC) to study brain network properties and 
brain-behavior relationships. Empirical studies in the 
functional magnetic resonance imaging (fMRI), 
electroencephalography (EEG), and 
magnetoencephalography (MEG) literature have 
begun to provide evidence that these measures are 
fundamentally linked and related to behavior (Cocchi, 
Gollo, Zalesky, & Breakspear, 2017). Similarly, 
theoretical studies have reported findings that suggest 
that statistical estimates of intrinsic and evoked activity 

and variability are highly interrelated (Abbott, Rajan, & 
Sompolinsky, 2011). Though studies have 
demonstrated robust relationships between these 
statistical measures (activity, variability, and FC), a 
mechanistic understanding of their emergent dynamics 
is not fully understood.  

Here we provide a mechanism that relates changes 
in observed network statistics that are governed by an 
underlying dynamical system. Specifically, we relate 
changes in evoked activity to changes in moment-to-
moment variability and FC. To highlight the underlying 
mechanisms in a simple way and to make our analysis 
tractable for dynamical systems analysis, we use 
minimal network models with firing rate dynamics 
(Wilson & Cowan, 1972). The use of minimal network 
models allows us to use the tools of dynamical 
systems theory to perform detailed phase-space 
analyses, enabling us to visualize the full range of 
dynamic interactions under various stimulus 
conditions. The conceptual ideas developed can then 
be generalized to higher dimensions. 

Evoked activation and deactivation reduce 
moment-to-moment variability in a neural 
population 

Relative to ongoing background activity, evoked 
activity has widely been associated with reduced 
moment-to-moment variability. This association has 
been reported in both large theoretical network models 
(Abbott et al., 2011) and empirical data across many 
data modalities and animal models (Cocchi et al., 
2017). 

One-dimensional neural mass model We used a 
firing rate model (Wilson & Cowan, 1972) and 
simulated intrinsic and stimulus-evoked states. We 
used the simplest model necessary to explain the 
relationship between evoked activity and moment-to-
moment variability, which was a single neural mass 
population. Specifically, our model was governed by 
the equation 



𝜏1

𝑑𝑥1

𝑑𝑡
= −𝑥1 + 𝑓(𝑤11𝑥1 + 𝑏1 + 𝑠1 + 𝐼)      (1) 

where 𝑥𝑖 denotes the firing rate (or a measure of 

activity), 𝜏𝑖 denotes the time constant, 𝑤𝑖𝑗 refers to the 

connection strength from node 𝑖 to 𝑗 (in this case a 
self-connection, where 𝑖 = 𝑗 ), 𝑏𝑖 refers to the input 

threshold for optimal activity (or a bias term), 𝑠𝑖 refers 

to the evoked stimulation, 𝐼 refers to background 

spontaneous activity sampled from a Gaussian 
distribution with mean 0 and standard deviation 0.25, 
and 𝑓 is the sigmoid input-output activation function 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
      (2) 

The sigmoid activation function was chosen due to 
its biological plausibility and previous empirical 
evidence suggesting that neural masses respond to 
input in sigmoid-like responses (Rall, 1955). Further, 
the choice of a sigmoid activation function is intuitive, 
given that insufficient input into a neural population will 
fail to excite many (or any) neurons, while extremely 
strong levels of input can maximally excite all neurons 
within the population (Wilson & Cowan, 1972).  

To demonstrate the relationship between evoked 
activity and background activity (i.e., spontaneous 
activity), we simulated the neural population during 
three states: baseline (spontaneous activity), stimulus 
evoked de-activation, and stimulus evoked activation. 
To provide a geometric intuition for these one-
dimensional firing rate models, we visualized the 
phase portrait for each neural population across three 
simulated states. 

Our model accurately demonstrated that evoked 
activity decreased the moment-to-moment variability of 
a single neural population. This finding corroborated 
previous accounts of evoked activity and moment-to-
moment variability in both empirical data (He, 2013) 
and large-scale recurrent network models (Abbott et 
al., 2011). Further, our minimal model provided us with 
complete access to the system’s dynamics, enabling 
us to characterize the dynamical mechanisms that 
underlie changes in the observed output variability. 
Specifically, we performed a linear stability analysis 
around the fixed point attractor of the system (i.e., the 
equilibrium level of activity the system is drawn to 
during a particular state), and analytically calculated 
the characteristic time scale at the fixed point, which 
represents the speed with which the system 
approaches the attractor, and is measured by 
evaluating the derivative of the system at the fixed 
point (Fig. 1D) (Strogatz, 1994). 
 

 

Figure 1: Shifting attractor dynamics provide a 
mechanism that underlies the relationship 
between evoked activity and moment-to-moment 
variability, as estimated with standard deviation 
(SD). A) For a single neural population, we simulated 
a baseline state, an activated state, and a de-activated 
state; for each we measured the SD of the time series. 
B) We visualized the phase portraits for each of the 
neural populations according to state by plotting the 
derivative of 𝑥1 (denoted 𝑥1̇) by 𝑥1. For each state, we 

calculated the fixed point attractor (plotted as a star). 
The arrows denote the direction/vector toward each 
fixed point. Evoked activity shifts the fixed point 
attractor, altering the underlying attractor dynamics. C) 
We ran a simulation across a range of stimulation 
amplitudes, ranging from -4 to 10 in .05 increments. 
For each stimulation, we calculated the SD across 
time. D) We characterized the shifting attractor 
dynamics for each state by computing the 
characteristic time scale at the fixed point for each 
stimulation amplitude. The characteristic time scale 
reflects the speed at which the system fluctuates 
around a given point in the phase space (Strogatz, 
1994). The characteristic time scale at a fixed point is 
perfectly correlated with the measured SD of the time 
series (rank correlation = 1.0). 
 



Across a range of evoked states, we found that the 
characteristic time scale explained 100% of the 
variance of the state-related moment-to-moment 
variability, providing an explicit dynamical mechanism 
underlying the relationship between evoked activity 
and the observed moment-to-moment variability. This 
is consistent with previous empirical accounts, 
suggesting that baseline states of spontaneous activity 
are characterized by slow fluctuations, while evoked 
states are characterized by fast fluctuations. 

Given the biological plausibility of a sigmoid-like 
function characterizing a neural population, these 
dynamical mechanisms can be biologically interpreted. 
Specifically, a baseline state, in which the fixed point 
attractor is 𝑥𝑖 = 0.5, the system produces high 

amplitude, low frequency fluctuations, consistent with 
previous findings (Cocchi et al., 2017). In contrast, 
evoked activity brings the fixed point closer to a state 
of saturation (i.e., close to 1), thereby quenching the 
moment-to-moment variability due to high input activity 
causing the neural population to saturate. Lastly, 
evoked de-activity brings the fixed point closer to a 
subthreshold state (i.e., close to 0), thereby also 
quenching the moment-to-moment variability due to 
low input activity preventing enough elements in the 
population to fire. 
 

Evoked activity induces changes in functional 
connectivity in a minimal network model 

We next sought to characterize how evoked activity 
might induce changes in FC. While FC is more 
generally construed as the statistical dependency 
between two neural time series, here we operationally 
define FC be the Pearson correlation between two 
neural time series. We extend our modeling approach 
to include two neural populations, the minimal model 
necessary to interrogate the dynamical mechanisms 
underlying the relationship between evoked activity 
and FC. 

Two-dimensional neural mass model The model 
was governed by the equations 

𝜏1

𝑑𝑥1

𝑑𝑡
= −𝑥1 + 𝑓(𝑤11𝑥1 + 𝑤21𝑥2 + 𝑏1 + 𝑠1 + 𝐼)      (3) 

 

𝜏2

𝑑𝑥2

𝑑𝑡
= −𝑥2 + 𝑓(𝑤22𝑥2 + 𝑤12𝑥1 + 𝑏2 + 𝑠2 + 𝐼)      (4) 

 
where variables are as described above. All parameter 
values were identical to the one-dimensional case. 
The connectivity parameters are taken to be positive. 

To quantify the relationship between evoked activity 
and FC, we systematically simulated the network 
under different stimulation states. For interpretability, 
we injected constant, boxcar stimulation to both units, 
and calculate evoked FC as a function of stimulation 

amplitude. Notably, given that the injected stimulation 
is uncorrelated (due to the injected inputs having no 
variance), it is non-trivial that the FC between two 
nodes would change across stimulation amplitudes. 
Relative to the baseline state, evoked activation and 
de-activation induced decreases in FC between the 
two neural masses.  
 

 
Figure 2: A mechanistic relationship between 
evoked activity and changes in FC. A) Neural mass 
time series of the simulated network model in the 
absence of stimulation. B) We plot the phase portraits 
of our network model to provide a geometric intuition 
underlying the contribution of dynamics to the 
emergence of correlations. To plot the vector field, we 
analytically plotted equation 3 as a function of equation 
4. We also plot the trajectory of the system as a 
scatter plot, to provide an intuition of how correlations 
might emerge from the underlying vector field. C) 
Neural mass time series during evoked activation. D) 
Phase portrait during a state of evoked activation. 
Notably, FC decreases from baseline during evoked 
activation. E) Neural mass time series during evoked 
de-activation. F) Phase portrait during a state of 
evoked de-activation. Notably, FC decreases from 
baseline during evoked de-activation. 
 

We next performed a phase plane analysis, which 
allowed us to track the simultaneous evolution of the 
two variables, thus providing a geometric visualization 



of the system (Fig. 2B,D,F). We observed that the 
baseline state supports trajectories along a diagonal 
axis (Fig. 2B), which is consistent with the emergence 
of correlated dynamics between the two units. In 
contrast, during states with evoked activity, the system 
approaches the fixed point from all directions in the 
phase plane more equally, suppressing trajectories 
along the diagonal axis and thus reducing the overall 
correlation of the two units (Fig. 2D,F). Thus, changes 
in FC are associated with changes to the underlying 
dynamics around the fixed point attractor.  

To more rigorously test the relationship between 
stimulated states and FC, we simulated our network 
model across a range of stimulation amplitudes. 
Similar to the one-dimensional model, we found that 
FC systematically changed (primarily decreases) as a 
function of the stimulation amplitude. Further, using 
dynamical systems analysis, we found that a 
generalization of the characteristic time scale in higher 
dimensional systems could account for changes in FC 
as a function of the input stimulation. In other words, 
we could analytically determine that changes in FC 
were associated with changes to the underlying vector 
field as a result of stimulation. Further, we were able to 
qualitatively replicate these results in a large scale 
network model, showing that evoked activity induces 
changes (primarily decreases) in within-network FC. 
Our findings are qualitatively consistent with empirical 
results in large scale functional networks with fMRI 
data (Gonzalez-Castillo & Bandettini, 2017), as well as 
results observed in large scale network models with 
chaotic dynamics (Abbott et al., 2011).  

 

Conclusion 

Using tools from dynamical systems theory, we 
provided a mechanistic explanation for the emergence 
of observed activity, variability, and FC from an 
underlying dynamical system. We used minimal 
models to demonstrate that simple network models are 
sufficient to explain many empirical phenomena widely 
described throughout the FC literature. Further, the 
use of minimal models allowed for a tractable 
dynamical systems analysis to evaluate and probe the 
system’s full dynamics. We then extrapolate the basic 
principles and mechanisms observed in minimal 
networks, and show that similar principles are 
observed in large scale network models (not shown 
here). 

The present theoretical framework establishes a 
rigorous foundation to interpret statistical 
measurements from brain networks using mechanisms 
from dynamical systems theory. Specifically, the 
framework suggests that observed measures of 
activity, variability, and FC are highly interrelated and 
emerge from the same underlying dynamical system. 
While measures of activity, variability, and FC have 

often been used independently in previous empirical 
work to understand brain and cognitive functions, our 
results suggests that future statistical analyses in 
empirical data and/or large scale theoretical models 
should use these measures in combination to 
triangulate the underlying dynamical states and 
processes contributing to brain and network function.   
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