
Modelling Human Visual Uncertainty using Bayesian Deep Neural Networks

Patrick McClure (patrick.mcclure@mrc-cbu.cam.ac.uk)
Tim C Kietzmann (tim.kietzmann@mrc-cbu.cam.ac.uk)

Johannes Mehrer(johannes.mehrer@mrc-cbu.cam.ac.uk)
MRC Cognition and Brain Sciences Unit, 15 Chaucer Road

Cambridge, CB2 7EF, UK

Nikolaus Kriegeskorte (nk2765@columbia.edu)
Columbia University, 116th St & Broadway

New York, NY 10027

Abstract
Dealing with sensory uncertainty is necessary for hu-
mans to operate in the world. Often, multiple interpre-
tations of an event are possible given the sensory evi-
dence, even if one interpretation is most likely. The ex-
act neurobiological mechanism used for representing un-
certainty is unknown, but there is increasing evidence
that the human brain could use stochasticity to code for
uncertainty. However, the convolutional neural networks
(CNNs) currently used to model human vision implement
deterministic mappings from input to output. We seek to
use stochasticity to improve CNNs as both computer vi-
sion models and models of human visual perception. We
used Gaussian unit noise and sampling to approximate
Bayesian CNNs for Ecoset, a large-scale object recogni-
tion dataset. We found that sampling during both training
and testing improved a CNN’s accuracy and ability to rep-
resent its own uncertainty for large-scale object recog-
nition. We also found that sampling during both train-
ing and testing improved the ability of linear classifiers
trained on internal CNN representations to predict human
confidence scores for image classification. These results
add to the evidence that Bayesian models predict key as-
pects of human object categorisation behaviour and that
sampling in biological neural networks could be a means
of representing uncertainty for visual perception in the
human brain.
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Introduction
Humans must deal with sensory uncertainty to operate in the
world (Vilares & Kording, 2011). Often, multiple interpreta-
tions are possible given some sensory input, even if one in-
terpretation is most likely. This requires neural representa-
tions to code a distribution of interpretations. It has been
hypothesised that humans and animals perform near opti-
mal inference by integrating this probabilistically represented
information using Bayesian decision theory (Knill & Pouget,
2004; Griffiths, Kemp, & Tenenbaum, 2008). For vision, it
has been shown that humans model their own objective un-
certainty (Barthelmé & Mamassian, 2009). Several proba-
bilistic neural coding frameworks have been suggested, such

as probabilistic population codes (PPC) (Ma, Beck, Latham,
& Pouget, 2006) and neural sampling (Fiser, Berkes, Orbán,
& Lengyel, 2010). For visual perception in particular, there
is evidence for a sampling-based probabilistic representation
(Berkes, Orbán, Lengyel, & Fiser, 2011; Moreno-Bote, Knill, &
Pouget, 2011; Orbán, Berkes, Fiser, & Lengyel, 2016).

Despite this, current neural network models of high level
vision are deterministic and do not model the uncertainty of
their learned representations. Specifically, deterministic deep
convolutional neural networks (CNNs) have become promi-
nent models in computational neuroscience for visual per-
ception (Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al.,
2014). These CNNs either use the maximum likelihood esti-
mate (MLE) or the maximum a posteriori (MAP) solution for
the parameters and do not model a distribution of parame-
ters or representations. Utilizing stochasticity can improve a
CNN’s accuracy and its ability to represent its own uncertainty
(McClure & Kriegeskorte, 2017). This is important in building
computer vision systems, but also in building better computa-
tional models of the human brain.

In this paper, we evaluate sampling in stochastic deep neu-
ral networks (DNNs). We approximate a variational Bayesian
CNN using MC Gaussian dropout (McClure & Kriegeskorte,
2017). We investigate how much using sampling affects a
CNN’s classification accuracy, predicted uncertainty, and the
ability to predict human confidence scores for natural image
classification.

Table 1: The convolutional neural network (CNN) architecture
used for CIFAR-10.

Layer Kernel Size # Features Stride Non-linearity
Conv-1 3x3 64 1 ReLU

MaxPool-1 2x2 64 2 Max
Conv-2 3x3 128 1 ReLU

MaxPool-2 2x2 128 2 Max
Conv-3 3x3 256 1 ReLU

MaxPool-3 2x2 256 2 Max
Conv-4 3x3 512 1 ReLU

MaxPool-4 2x2 512 2 Max
Conv-5 3x3 512 1 ReLU

MaxPool-5 2x2 512 2 Max
Conv-6 3x3 1024 1 ReLU

MaxPool-6 2x2 1024 2 Max
Conv-7 3x3 1024 1 ReLU

AveragePool-1 3x3 1024 0 Max
FC 1024 nclasses - Softmax



Methods
Approximating Bayesian neural networks using
Monte Carlo Gaussian dropout
In machine learning, noise has been traditionally injected into
neural networks as a form of regularisation during training fol-
lowed by using the layerwise expectation during testing, as
done using Bernoulli dropout (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014) in AlexNet (Krizhevsky,
Sutskever, & Hinton, 2012) and VGG-16 (Simonyan & Zis-
serman, 2014). However, sampling both during training and
testing in Bayesian CNNs can lead to better representation of
uncertainty. Monte Carlo (MC) sampling during training and
testing using multiplicative Gaussian unit noise with a mean
of 1 and a variance of α = (1− p)/p, where p is the dropout
hyperparameter, approximates Bayesian inference in neural
networks (McClure & Kriegeskorte, 2017). For the matrix Vm
of layer m weight means vi, j, unit noise εi ∼ N (0,1), and
non-linearity h, each unit, h(zm,i), is defined using:

zm,i =
nm−1

∑
j=1

h(zm−1, j)vi, j + εi
√

α

nm−1

∑
j=1

h(zm−1, j)vi, j (1)

Architecture and datasets
Large-scale object recognition We tested three CNNs: (1)
a baseline CNN with no sampling, (2) a CNN with Gaussian
unit noise before each ReLU non-linearity only during learn-
ing, and (3) a CNN with Gaussian unit noise during training
and testing. For all CNNs with sampling during testing, 10
MC samples were used. Each CNN had 8 layers, 7 convolu-
tional and a softmax readout layer, which transforms an acti-
vation pattern into a probability distribution (Table 1). CNNs
with this architecture were trained on Ecoset (Mehrer, Kiet-
zmann, & Kriegeskorte, 2017) using stochastic gradient de-
scent with momentum and weight normalisation (Salimans &
Kingma, 2016). ImageNet (Russakovsky et al., 2015), the
most widely used image set used to train CNNs, is a 1,000
class object recognition problem with 1.2 million training im-
ages and 150,000 validation images. However, the ImageNet
categories are biased towards certain entry-level categories,
such as birds and dogs. As a computer vision task, this is rea-
sonable, but from a human visual neuroscience perspective
models should be trained on the image distributions that more
closely resemble the humans experience. The Ecoset project
seeks to create a dataset that more closely matches the hu-
man visual diet. This image set is a 565 class object recog-
nition with 569,413 training images, 28,900 validation images,
and 28,900 testing images. We evaluated how much using
MC sampling during testing, which approximates the expected
prediction for an input, affected Ecoset trained CNNs. For all
of the CNNs with MC sampling, p = 0.2 was found to be the
best Gaussian dropout parameter value using validation test-
ing.

Modelling human confidence using decision boundaries
The translation from internal representations in the human

Table 2: The accuracies for the Ecoset trained CNNs on the
Ecoset test set. For MC sampling, the mean and standard
deviation of the accuracies across 5 MC runs, each computed
with 10 MC samples.

CNN Ecoset Accuracy (%)
MAP 49.09

MC Training 53.36
MC Training and Testing 55.06 ± 0.09

brain to decisions about object categories has been modelled
using linear decision boundaries (Carlson, Ritchie, Kriegesko-
rte, Durvasula, & Ma, 2014; Ritchie & Carlson, 2016). These
models successfully predict human reaction times, a proxy for
human confidence, for object recognition. A similar approach
can be used to predict human confidence scores from the in-
ternal representations of DNNs using the decision scores of
linear classifiers (Eberhardt, Cader, & Serre, 2016). Eber-
hardt et al. (2016) created five non-overlapping sets of 300
grey-scaled randomly sampled ImageNet images, each set
containing 150 animal and 150 non-animal images. For each
image, 50 participants were asked to classify it as animal or
non-animal during a fixation task. Eberhardt et al. (2016) com-
puted a human confidence score for each image by consid-
ering the fraction of correct animal/non-animal classifications
across the 50 participants shown that image. In order to eval-
uate the ability of sampling to improve prediction of human
uncertainties, we trained logistic regression models to classify
animal and non-animal images using the internal represen-
tations of the Ecoset trained CNNs as input. These logistic
regression models were trained using leave-one-out crossval-
idation across the five non-overlapping image sets created by
Eberhardt et al. (2016). For the MAP CNN, the internal rep-
resentation for layer m, zm, for an image was deterministic,
leading to the logistic regression optimising:

max
W

p(y|zm) (2)
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Figure 1: Sampling during training and testing improves
CNN calibration for large-scale object recognition. The
CNN calibration curves for the Ecoset trained CNN on the
Ecoset test set.
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Figure 2: Sampling during training and testing improves
the correlation between CNN-based predicted probabili-
ties and human confidence scores. The mean and stan-
dard errors across the five image sets for the (a) accuracies
and (b) correlations with human confidence scores for the lo-
gistic regression models trained at each CNN. ∗ denotes the
”MC Training and Testing” models have significantly higher (p-
value<0.05, Bonferonni corr.) correlations with human confi-
dence scores than both the ”MAP” and ”MC Training” models
per a non-parametric bootstrap sampling test.

For the stochastic CNN, the internal representation was
stochastic, leading to logistic regression optimising:

max
W

∫
p(y|x,zm)p(zm|x)dz (3)

This integration is approximated using MC sampling with n
samples:

max
W

1
n

n

∑
k=1

p(y|x, z̃k
m) where z̃k

m ∼ p(zm|x) (4)

For training, one MC sample was used, as in MC Gaussian
dropout. For testing, ten MC samples were used to approxi-
mate the predicted probability of class y for input x per:

p(y|x)≈ 1
n

n

∑
k=1

p(y|x, z̃k
m) where z̃k

m ∼ p(zm|x) (5)

Results
Sampling improves accuracy for large-scale object
recognition
Using random noise in deep neural networks during learning
is often used to reduce overfitting and increase generalisa-
tion performance (Srivastava et al., 2014). However, sampling

during testing can sometimes lead to accuracy improvements
(McClure & Kriegeskorte, 2017). We found that for large-scale
object recognition CNN that we trained, MC sampling at test
time led to significant accuracy improvements (Table 2) for
Ecoset.

Sampling improves the representation of
uncertainty for large-scale object recognition
Humans can accurately estimate their objective uncertainty
for visual perception (Barthelmé & Mamassian, 2009). AA
good computational model of human vision would therefore
also need to properly represent its own uncertainty. A model
correctly models its own uncertainty (i.e. is well calibrated) if
its predicted probabilities closely match the frequency of cor-
rectly predicting the true label. To evaluate a network’s ability
to model its own uncertainty, we calculated the calibration of
each of these methods’ probabilistic predictions to evaluate
the quality of the learned representations. We evaluated how
calibrated a prediction was by: (1) Binning test set predictions
by predicted probability and then (2) calculating the frequency
that predictions in each predicted-probability bin correctly pre-
dicted a target label. The larger the difference between these
values and the x = y line, the worse the calibration of the
model. Sampling during training and testing led to improved
calibration of output predictions (Figure 1).

Sampling improves the prediction of human
confidence for image classification
We evaluated the how well a logistic regression model pre-
dicted human uncertainty by calculating the Pearson cor-
relation coefficient between the human confidence scores
for animal/non-animal classification from ImageNet images
(Eberhardt et al., 2016) and the output probabilities of a lo-
gistic regression model. We hypothesised that MC sam-
pling during training and testing would lead to a significantly
higher correlation between model predicted probabilities and
human confidence scores. We tested this hypothesis by test-
ing whether the difference between the the correlations was
positive for both comparisons using 100,000 bootstrap sam-
pled predictions from the predicted probabilities across layers
and input images. MC sampling during both training and test-
ing led to significantly improved correlations to human confi-
dence scores compared to both the MAP and MC sampling
only during training (p=1e-5 and p=1e-5, respectively). As
found by Eberhardt et al. (2016), the accuracy and correla-
tion with human confidence scores of the linear classifiers
generally increases the deeper the layer, except that they de-
crease at the softmax layer (Figure 2.a). This might have been
caused by the increased Ecoset specialisation of the 8th (out-
put) layer features and decreased dimensionality of the 8th
layer features. Using a non-parametric bootstrap test for each
layer showed that MC sampling during training and testing im-
proved prediction of human confidence scores at deep hid-
den layers (Figure 2.b). This may be caused by the fact that
sampling only during training relies on the assumption of a lin-
ear network when approximating the expectation of the output.



This assumption is increasingly violated as we move to deeper
layers of the network, which may explain the widening of the
gap between the human confidence prediction accuracies of
the two models.

Discussion
Biological neural networks are highly stochastic. This vari-
ance may code for uncertainty in neural representations. In
this work, we evaluated the effect of adding stochasticity (in
the form of Gaussian unit noise) and sampling-based test-
ing on large scale CNNs. We tested the effects of sam-
pling during learning and during training and testing on Ecoset
trained CNNs. Sampling during training and testing not only
improved the accuracy and the representation of uncertainty
of CNNs for the Ecoset test set, making the CNNs better com-
puter vision models, but also increased the correlation be-
tween the predictions of classifiers trained on the internal rep-
resentations of CNNs and human confidence scores, making
them better models of human visual perception. These im-
provements were caused by simply injecting random Gaus-
sian noise into the CNNs and integrating over different ran-
dom noise samples. This mechanism is not only simple, but
also neurobiologically plausible. These results add to the ev-
idence that Bayesian models predict human behaviour and
that sampling in biological neural networks could be a means
of representing uncertainty for visual perception in the human
brain.
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