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Abstract
Inferring individual sound sources from the mixture of
soundwaves that enters our ear is a central problem in au-
ditory perception, termed auditory scene analysis (ASA).
The study of ASA has uncovered a diverse set of illu-
sions that suggest general principles underlying percep-
tual organization. However, most explanations for these
illusions remain intuitive or are narrowly focused, with-
out formal models that predict perceived sound sources
from the acoustic waveform. Whether ASA phenomena
can be explained by a small set of principles is unclear.
We present a Bayesian model based on representations
of simple acoustic sources, for which a neural network
is used to guide Markov chain Monte Carlo inference.
Given a sound waveform, our system infers the number
of sources present, parameters defining each source, and
the sound produced by each source. This model qualita-
tively accounts for perceptual judgments on a variety of
classic ASA illusions, and can in some cases infer per-
ceptually valid sources from simple audio recordings.

Keywords: Bayesian models; Auditory scene analysis; Audi-
tory perception; Probabilistic programs; Natural scenes; Per-
ceptual organization; Perceptual grouping; Source separation

Introduction
Listening to music, the ambience of a city street or even your
relatively quiet office, one striking aspect of our phenome-
nal experience is the presence of multiple streams of sound.
We tend to experience these streams as arising from distinct
sources. Indeed, the acoustic signal received by the ear is
often a mixture of soundwaves generated by various sources,
and apprehending these individual sources facilitates interact-
ing with the world. Inferring sources from sound is a cen-
tral problem in auditory perception, commonly termed auditory
scene analysis (ASA, Bregman (1990)). ASA is ill-posed: in-
finitely many combinations of sources can generate the same
signal. The problem is only solvable due to regularities in natu-
ral audio, which the auditory system must internalize as priors
to enable source inference.

Historically, synthetic auditory stimuli akin to visual illu-
sions have been used to uncover perceptual priors (Bregman,
1990), demonstrating listeners’ tendencies to perceive partic-
ular types of source structure. Research over the past five
decades has documented a wide variety of such phenomena.
However, at present, we lack a formal account of these au-
ditory illusions, let alone everyday auditory scenes. Here, we
present a computational model aimed at providing the founda-
tion for a comprehensive account of human ASA. We believe

such a foundation necessitates inference from the audio sig-
nal and the ability to describe diverse sources.

Model
Our model is a Bayesian probabilistic program (Goodman &
Stuhlmüller, 2014), expressing uncertainty over both continu-
ous and structural latent variables. The model comprises:

1. Prior, p(S): A sampling procedure generates a hierarchi-
cal symbolic description of a scene, S. S consists of one or
more parameterized sources, which each emit a sequence
of one or more sound elements. Our model includes two
source models that vary by the type of sound element they
produce: tones or noises. These source types were cho-
sen because they can describe the majority of stimuli in the
ASA literature. Element parameters are drawn from Gaus-
sian processes, with parameters set to instantiate local cor-
relations in time and frequency that are present in natural
sounds (McDermott, Wrobleski, & Oxenham, 2011).

2. Likelihood, p(D|S): A stochastic renderer uses this sym-
bolic scene representation to sample an audio signal, rep-
resented as a gammatonegram D. This time-frequency
representation of sound approximates the filtering prop-
erties of the human ear (Ellis, 2009; Glasberg & Moore,
1990). To compute the likelihood, a sampled gammatone-
gram is compared to the observation under a Gaussian
noise model.

Given a sound waveform D, these components induce a
posterior distribution over auditory scenes, p(S|D).

Inference

Inference is difficult due to the many local optima that arise
when parsing elements from raw audio, and to the combina-
torially large number of assignments of these elements into
sources. Also, as neither the number of sources nor elements
are known in advance, inference involves searching a space
of auditory scenes with varying dimensionality.

We address these challenges combining two contemporary
tools: we implement our model as a probabilistic program in
the language WebPPL (Goodman & Stuhlmüller, 2014), and
then sample (S,D) pairs from this program to train a deep neu-
ral network as a bottom-up feature detector. The architecture
of this network was adapted from Ren, He, Girshick, and Sun
(2015), developed for multiple-object detection in images. Ap-
plied to novel sounds, the network returns bounding boxes for
multiple elements along with their type. These candidate ele-
ments are used to initialize and guide MCMC inference.
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Figure 1: Top row shows gammatonegram of observed sound. Lower rows show sources rendered from one posterior sample.

Results
We tested whether the model could qualitatively replicate a
range of classic ASA illusions. For each illusion, the model
inferred samples comprising the approximate posterior dis-
tribution. We also tested the generalization of the model to
recorded audio that was derived from a bank of simple nat-
ural sounds. All audio recordings, accompanying gamma-
tonegrams, and example posterior samples can be found at
http://mit.edu/mcusi/www/basa-ccn.

Grouping in tone sequences

In a classic experiment, Tougas and Bregman (1985) inter-
leaved rising and falling tone sequences, producing an ‘X’
pattern. They presented listeners with subsets of the tone ele-
ments in the ‘X’ pattern and asked them to rate how clearly the
subset resembled something they heard in the tone sequence.
Listeners found it difficult to hear rising or falling trajectories in
the mixture. Instead, listeners were strongly biased to hear
the higher frequency tones as segregated from the lower fre-
quency tones, producing two sequences that ‘bounce’ and re-
turn to their starting points. The generative model qualitatively
replicates this preference for frequency proximity, with 90% of
posterior samples segregating tones into higher- and lower-
frequency ranges (Figure 1A).

Perceptual ‘filling-in’

When sources produce sounds that overlap in time and fre-
quency, sufficiently intense sounds can obscure the presence
of less intense sounds – a phenomenon termed ’masking’
(Warren, Obusek, & Ackroff, 1972). In such cases, the ad-
dition of the less intense sound does not alter the peripheral
auditory representation to a detectable extent. However, the
perceptual interpretation can be modulated by context. For
instance, a noise flanked by tones could equally well consist
of two short tones adjacent to the noise, or a single longer
tone overlapping the noise. Listeners hear this latter interpre-
tation as long as the noise is intense enough to have masked
the tone were it to continue through the noise (Warren et al.,
1972), and posterior samples from our model reliably repro-
duce this pattern (decreasing noise amplitudes in Figure 1B).

We also tested whether the model can recapitulate trends
in perceptual completion in two other illusions. First, we tested

the model on a variant of the continuity illusion described
above involving only amplitude modulated noise. Like hu-
man listeners, the model infers a quiet source continuing be-
hind a louder source only when the amplitude is modulated
suddenly (Figure 1C). Second, analogous phenomena occur
over the frequency spectrum, dubbed ’spectral completion’
(McDermott & Oxenham, 2008). When a masker is present,
the model infers energy at masked frequencies belonging to a
short target sound (Figure 1D), in accordance with listeners.
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