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Abstract
Much of neuroscience aims at reconstructing brain func-
tion, but we only record a small number of neurons at a
time. We do not currently know if simultaneous recording
of most neurons is required for successful reconstruc-
tion, or if multiple recordings from smaller subsets suf-
fice. This is made even more important as novel tech-
niques allow recording from selected subsets of neu-
rons. To get at this question, we analyze a neural net-
work, trained on the MNIST dataset, using only partial
recordings and characterize the dependency of the qual-
ity of our reverse engineering on the number of simul-
taneously recorded ”neurons”. We find that prediction
in the nonlinear neural network is meaningfully possible
if a sufficiently large number of neurons is simultane-
ously recorded but that this number can be considerably
smaller than the number of neurons. Moreover, record-
ing many times from small random subsets of neurons
yields surprisingly good performance. This type of analy-
sis we perform here can be used to calibrate approaches
that can dramatically scale up the size of recorded data
sets in neuroscience.

Keywords: Systems Identification, Experiment Planning,
ANNs, Partial Recordings.

Introduction
Reconstructing input/output (I/O) function in the brain plays
an important role in neuroscience. To do so, neuroscientists
record the activity of neurons and try to model their relation-
ship using machine learning (ML) and statistical methods (e.g.
see Pillow et al. (2008); OLeary et al. (2015)). However, cur-
rent technology allows us to record only a small subset of the
neurons that participate in the solution of even simple tasks.

Even though it is not possible to simultaneously record all
neurons involved in a task, it is possible to make multiple par-
tial recordings potentially with different observed neurons in
each recording. For example, multi-electrode measurements
(Ballini et al., 2013), 2-photon calcium imaging (Kerr & Denk,
2008) and optogenetics (Deisseroth, 2011), allow us to simul-
taneously observe a subsets of neurons. The optical methods
even allow us to select which exact set of neurons we want to
record. Therefore, it is natural to question if integrating multi-
ple partial recordings can compensate for partial observation.

Based on these technological advances, a few studies have
recently focused on dealing with sub-sampled observations
of neural activity. Pillow & Latham (2007) extend the linear-
nonlinear Poisson (LNP) framework to include the activity of
unmeasured (hidden) neurons to estimate connectivity pat-
terns among observed and unobserved neurons. However,

the method is limited to small numbers of unobserved neu-
rons. Wohrer et al. (2010) propose recovering the full noise
correlation matrix from partial electrophysiology recordings,
based on fully observed signal correlations. Turaga et al.
(2013) use a latent dynamical system model to combine two
non-simultaneously recorded but strongly interacting popula-
tions of neurons into one model, and show that combining
partial observations improves the prediction of neural activity.
These studies show that there is a growing interest in combin-
ing partial observations to improve our understanding of the
brain.

Quantifying the added benefit of combining partial informa-
tion to elucidate neural function is hard, particularly in the
absence of known ground truth. Recently, Jonas & Kording
(2017) advocate using man-made systems, where the ground
truth is fully accessible, to evaluate methods used for studying
biological systems and identify their strengths and caveats.
Based on this idea, in this paper, we explore how well we
can reverse engineer the neural activation in an artificial neu-
ral network (ANN) based on partial observations of its hid-
den neurons. We see this as a step forward in answering the
following questions: Is it meaningful to try and reconstruct a
complex neural circuit when we only partially observe it? What
is the best way of dealing with the missing information in par-
tial recordings? Which of the ML methods is more successful
for the task? And finally, what is the best strategy for com-
bining partial observations, given that the sampling capacity
is technically limited?

In addition, in light of the recent successes of ANNs in a
wide range of ML problems, reconstruction an ANN has be-
come an interesting problem in its own right. In particular,
reconstructing part of a networks’ I/O functions based on par-
tial observations is related to the redundancy of the specific
network. Izui & Pentland (1990) show that redundant neural
networks are more accurate, faster and more stable. Denil et
al. (2013) show that there is significant redundancy in the pa-
rameterization of several DL models and that based on a few
parameters of the model it is possible to accurately predict
the remaining values. Cheng et al. (2015) exploit the redun-
dancy in ANNs to reduce memory footprint. Techniques based
on knowledge distillation (Hinton et al., 2015) compress the
knowledge of a network into a more compact model, which is
trained to predict the soft outputs of the larger model. Being
able to understand neural networks based on ”recordings” is
important both in biology and in machine learning.

To approach this question, we train ANNs on the MNIST
dataset. We use these ANNs as the ground-truth networks,
and use state-of-the-art ML methods to estimate their inter-
mediate I/O functions using partial observations of the hidden
layers as input. We then examine how estimation accuracy



behaves for settings of partial observation. This resembles
prediction in neuroscience, where subsets of neurons in dif-
ferent parts of the brain are measured, and ML methods are
used to estimate the I/O relationship between them.

Results
In neuroscience, we often try to reconstruct the functionality
or I/O function of areas in the brain. However, brain mea-
surements are noisy and limited by the recording technolo-
gies, and the ground truth is not known. Here, we use stan-
dard ANNs trained on a classical hand-written digit dataset
(MNIST) as the ground truth systems. We use 3000 samples
from the MNIST training data to train our ANNs, while the rest
is used to produce partial recordings data, described below.
Assuming a network of L+ 1 layers (with l = 0 being the in-
put layer and l = L the output layer), with Nl neurons on each
layer, the activity of the neurons in the output layer L is a func-
tion of the activity of any previous layer l:

{OL
i }

NL
i=1 = f ({Ol

j}
Nl
j=1), (1)

where Ol
n is used to denote the output of neuron n in layer l.

In this work, we train two different ANNs on the MNIST data
(i: NN with 4 hidden layers of 128 neurons in each layer and
99.62 and 97.36 accuracy on training and test data; ii: DNN
with 7 hidden layers of [512, 256, 256, 128, 128, 128, 128]
neurons and 99.55 and 97.78 accuracy on training and test
data). These serve as our ground truth system whose inter-
mediate I/O function we try to approximate based on multiple
partial recordings. We assume that at any given point of time,
we can only record a subset of neurons, and will thus have
considerable missing information. We want to quantify how
well reconstruction is possible based on an ML technique, the
approach to deal with the missing data (unrecorded neurons),
the number of recorded neurons, and the noise level.

To address these issues, we simulate partial recordings
from the trained ANNs and use ML to reconstruct the hidden-
unit to output-unit mapping. We assume that there is a se-
quence of settings k. For each setting, only a random subset
of neurons is observable. We can think of each k, as one set-
ting of the electrical or optical recording apparatus. For each
setting, we thus observe the activity of a different subset of
the neurons {Ol

j} j∈Obsk , while the rest are unobserved. An
example of partial data is shown in Fig.1. This way, we pro-
duce simulated training sets that approximate what we may
record partially from a real brain.

Based on the data collected from the (partial) recordings,
we want to estimate the activity of the output neurons as a
function of all the observed neurons in layer l:

{ÔL
i }

NL
i=1 = f̂ ({Ol

j} j∈∪kObsk). (2)

This problem is not trivial because the partial recordings pro-
duce many missing values corresponding to unobserved neu-
rons in each recording. The missing data have a specific
structure: in each recording, only a subset of variables (neu-
rons) are observed. The final model in Eq.2 is defined over the
union of all variables that have been observed in at least one
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(a) Trained net (b) Subset 1 (c) Subset 2 (d) Subset 3

Figure 1: An example of three recording subsets. (a) The ground-
truth neural network. (b,c,d): An example of three (K = 3) settings.
In each setting, the all output neurons and two of the neurons of layer
1 are observed. Observed neurons are outlined in black.

of the recordings. The ratio of missing over observed data is
higher for recordings with fewer observed neurons per record-
ing.

Missing data is a common problem in statistics, and the way
it is dealt with can affect the results, depending on the miss-
ingness mechanism. In the simplest case, where data are
missing independently of observed and unobserved data, the
data are said to be Missing Completely At Random (MCAR)
Rubin (1976). This is the case for the partial data, since the
inclusion of a neuron in a recording is based on the sampling
design, and does not depend on the activity of the neurons,
observed or unobserved. When data are MCAR, excluding
the samples with missing values do not bias the results. How-
ever, discarding every sample that includes a missing value
is not possible here, since every recording has some missing
values. Thus, we must select a strategy for dealing with the
missing data.

The most common strategy for missing values is mean
value imputation (MVI), where every missing value for a vari-
able is replaced with its sample mean. More complex ap-
proaches in the area of multiple imputation (Rubin, 1996) fill
in the missing values by assuming a model for the missing
values that can be estimated from observed values. The es-
timated model is then used to impute the missing values. For
example, Soft-Impute (SI) iteratively uses a soft-threshold sin-
gular value decomposition (SVD) to replace the missing val-
ues (Mazumder et al., 2010). In this work, we use MVI and SI
to complete the missing values in our partial recordings data.

An alternative approach to using all the data in the same
model is to train a separate estimator for each recorded sub-
set and combine the predictions. In this case, the estimator in
Eq.2 can be computed as the average of K marginal estima-
tors:

f̂ ({Ol
j} j∈∪kObsk) =

1
K ∑

k
f̂k({Ol

j} j∈Obsk) (3)

The advantage of marginal estimators is that each f̂k can
be identified with any appropriate ML method without prepro-
cessing, in parallel. However, each marginal estimator is then
estimated based on fewer samples.

We now use simulated experiments to examine how the
quality of reconstruction based on partial recordings depends
on: (a) data imputation method, (b) noise level, (c) size of the
ground truth network, and (d) number of recorded subsets.



We use NN and DNN networks as our ground truth networks,
and simulate observations by sampling with replacement from
the second half of the MNIST training data that were not used
for training the ground truth networks. We typically simulate
K = 10 partial recorded subsets. This means that we consider
K subsets of neurons to record from, each chosen randomly
(and thus often overlapping), which corresponds to switching
the subset of neurons recorded K−1 times. In each subset,
all output neurons and N neurons from a given hidden layer
are observed.

In real neuroscientific experiments, there is a fixed infor-
mation throughput that limits the overall data set size: You
can either opt to record more neurons (larger subset sizes) for
fewer samples, or fewer neurons for more samples. Thus, to
make more meaningful comparisons, we only compare situa-
tions where the same total amount of information is acquired,
i.e. each training set will have the same product of the number
of observed neurons and the number of observations.

We then train an ML method to predict the values of the
output neurons based on the partial data of the given hidden
layer. We used XGBoost and ANNs coupled with imputation
techniques (MVI and SI), as well as with combining separate
marginal models (denoted by MP for mean prediction). In ad-
dition, we used XGBoost with the built-in approach for han-
dling missing data without explicitly imputing the missing val-
ues, by adding a default direction to each tree node (denoted
by XBG-G). For each partial data set, we trained an indepen-
dent model with XGBoost for every output neuron, and a sin-
gle ANN model with 10 output neurons. XGBoost was used
with the following parameters: η = 0.5 and max depth = 6.
We used an ANN with three hidden layers (16 neurons in
each, ReLU activation function) and applied early-stopping
based on loss value. We repeated this procedure for 5 iter-
ations of random subsamples.

To compare the performance of different methods on par-
tial recordings, for each iteration, we calculate the average
(over all output neurons) Root Mean Squared Error (denoted
by RMSE). Fig.2 shows the reconstruction accuracy for dif-
ferent methods as a function of the number of observed neu-
rons in each recording. Both layers have similar performance.
The error decreases as the number of observed neurons in-
creases, although the total number of non-missing data points
remains nearly the same. For both layers, ANNs with MVI
perform better for almost all settings.

The recordings of neural networks include several sources
of noise. The effective noise in the recordings has a com-
ponent that comes from measurement, e.g. Johnson noise
in the electrode, and a component that comes from the brain
itself (e.g. Poisson noise in spiking). To study the effect of
noise, we add signal-dependent noise to the partial record-
ings. For each sample, we add zero-mean Gaussian noise
with variance that is proportional to the activity of the neuron
in the given sample. We set the noise variance to 20,50 or
100 percentage of the neurons’ activity value. Here, 100%
corresponds to the level expected for a Poisson process. We
add the noise after simulating the partial recordings and use
ANNs to estimate the I/O function. To check which of the im-
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Figure 2: Neural networks with mean value imputation work best
at reverse engineering an ANN, even in the presence of noise.
RMSE as a function of the subset size from the first (left) and third
(right) layer of the ground truth NN for various top: reconstruction
techniques, and bottom: additive noise levels.

putation techniques can handle the noise better, we consider
both MVI and SI imputation techniques. MVI still outperforms
SI, but both methods are robust to all levels of additive signal-
dependent noise (Fig.2).

We also simulated data from a deeper NN (DNN) as a
ground truth network, to compare estimation accuracy when
the ground truth network is bigger and has more redundancy.
Results in Fig.3 show similar trends in both NN and DNN data:
increasing the number of observed neurons improves perfor-
mance. Moreover, for wider layers, a smaller ratio of neurons
is required for adequate performance. In all layers, by observ-
ing roughly twenty percent of the neurons, we can achieve
nearly the same error rate as with a fully observed layer.
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Figure 3: Simultaneously recording more neurons helps reverse
engineering for a fixed number of samples, just as well for shal-
low and deep networks. Left: RMSE for reconstruction as a func-
tion of observed subset size using ANN-MVI in different layers of the
NN and DNN. Right: Performance (as a percentage of maximum de-
crease in RMSE) vs percentage of observed neurons for each layer.

Results so far show that increasing the number of the ob-
served neurons at the expense of presenting fewer stimuli im-
proves reconstruction accuracy for a fixed number of selec-
tions of subsets of neurons. However, it is possible that in-
creasing the number of selected subsets can compensate for
few simultaneously recorded neurons. Choosing many differ-
ent subsets is often experimentally feasible, e.g. by focusing
a laser on different subsets of neurons on a different plane.
To test the trade-off between the number of subsets and num-
ber of recorded neurons in each, we simulated partial data for



varying K, and a different number of observed neurons per
subset. While no meaningful infenences are possible with a
single selection of neurons (Fig.4), increasing the number of
selected subsets improves the prediction accuracy; this im-
provement is more noticeable when fewer neurons are simul-
taneously recorded. Changes in performance are not always
monotonic; in general, however, combining more subsets can
compensate for the lack of full observations and achieve sim-
ilar performance to combining fewer recordings of larger sub-
sets.
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Figure 4: Sequentially recording from many subsets of neu-
rons can compensate for recording only small subsets at a time.
RMSE for reconstruction using ANN-MVI for a different number of
sequentially recorded subsets K, keeping the total number observed
values approximately constant.

Discussion
Modern techniques in neuroscience allow simultaneous
recordings from many neurons. Motivated by this, we in-
vestigated how well we can predict neural activity in ANNs
from multiple partial observations. Surprisingly, MVI -the sim-
plest and easiest imputation technique- achieves a lower er-
ror rate even compared to a more complex and computation-
ally expensive method, like SI. Also, we found that increas-
ing the number of simultaneously observed neurons increases
the quality of our prediction. However, many recordings from
small subsets of neurons can well approximate what we get if
we simultaneously record from all neurons. Thus, combining
multiple partial recordings may improve our understanding I/O
functions in the brain.

Obviously, an artificial neural network is not a brain. Even
though ANNs are inspired by neuroscience, brains are bio-
physically more complex and probabilistic. Biological neurons
can perform on many different time scales and are more het-
erogeneous in many ways. In the brain, the communication
takes place through spikes, whereas it happens via abstract
rates in neural networks. Moreover, in our specific work here,
we dealt with small ANNs, whose architectures are obviously
idiosyncratic,as they are simple feed-forward neural networks
with no lateral or recurrent connections. In addition, ground
truth networks were only trained on the MNIST dataset. Ar-
guably, the manifold of hand-written digits has a far simpler
structure than typical manifolds of things in the real world.
Thus, our analysis might give categorically different answers
if we could apply it to the real brain.

Nevertheless, this work presents a test case where artificial
systems are used to evaluate and guide computational neuro-
science. Using ANNs as a stand-in for an actual neural circuit,
we found that reverse engineering neural function based on a

small fixed subset of recorded neurons is not possible, even
for a low dimensional task. This may suggest that the num-
ber of neurons that need to be simultaneously recorded may
be larger for more complicated tasks. We, therefore, believe
that a similar scaling analysis should be standard for reverse
engineering in neuroscience applications.

Modern neuroscientific techniques allow running similar
analyses to the one we presented here on real brains. Us-
ing Ca2+ imaging along with modern optical targeting tech-
niques allows trading of the number of recorded neurons with
the noise level. It also allows simultaneous recording from the
input parts of a system and the outputs. As such, the neu-
ral network that we used here, could be readily replaced with
a real sample of brain tissue. Doing scaling analyses on re-
verse engineering approaches is the only way of knowing how
recording techniques need to be optimized.
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