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Abstract
Cortico-basal-ganglia-thalamic (CBGT) networks are crit-
ical for adaptive decision-making, yet it remains unclear
how their circuit-level properties manifest as cognitive
processes. Using a multilevel, biologically plausible mod-
eling approach we simulate CBGT networks to illustrate
how (1) dopamine (DA) signals modify the strength of stri-
atal direct (D) and indirect (I) pathways in accordance with
a simple reinforcement learning model and (2) learning in-
duced asymmetries in D/I efficacy map to specific cogni-
tive parameters. Simulations of corticostriatal synapses
show that DA feedback leads to asymmetrical weights for
D and I pathways within a given action channel. The ratio
of these weights (wD/wI) effectively encodes the action’s
expected value (Q). We then simulated the full CBGT net-
work in the context of a 2-choice value-based decision
task, varying the corticostriatal weighting schemes (i.e.,
wD/wI) for one action channel. The response times from
these simulations were fit with a drift-diffusion model
(DDM). As wD/wI increased, both drift rate (v ) and bound-
ary height (a) parameters changed in the DDM model, with
v associated with differences in between-channel D path-
way activity, while a modulated with overall I pathway ac-
tivity. These simulations show how microscale plasticity
at corticostriatal synapses can alter specific macroscale
properties of cognitive decision processes.
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Background
DA error signals favor the D pathway over the I pathway
for rewarding actions with the opposite tendency for aver-

sive ones, effectively encoding the values of alternative ac-
tions. It remains unclear how changes in action value influ-
ence the mechanisms of the action selection process itself.
We used a multi-level modeling approach (Figure 1) to inves-
tigate how dopaminergic feedback alters the circuit-level dy-
namics of CBGT pathways, and ultimately, emergent decision
computations.

Figure 1: Multi-level modeling schematic. Left: Spike-timing
dependent plasticity (STDP) model of dopaminergic effects
on D and I cortico-MSN synapses. Middle: Cortico-basal
ganglia-thalamic (CBGT) pathways. Right: Drift-diffusion
model (DDM) of two-alternative choice behavior.

Methods & Results

Spike-timing dependent plasticity (STDP) model

We first simulated the performance of a two-alternative forced
choice task in a spiking CBGT network. Performance of an
action yields a reward, the size and possibly the sign of which
depend on the action selected. The spiking model is aug-
mented with phenomenological representations of (1) action
values, Qi(t) for action i{L,R}, which are updated based on
a difference scheme suggested previously (Mikhael & Bogacz,
2016), and (2) immediate dopamine release, DA(t), the level



of which is derived from comparing the reward level ri result-
ing from the performance of action i to the maximum value
believed to be attainable based on past experience. Mathe-
matically, the performance of action i at times t j−1 yields the
following updates at time t j: Qi(t j) =Qi(t j−1)+(ri−Q(t j−1))
(Eq.1) and DA(t j) = ri − max(QL(t j−1),QR(t j−1)) (Eq.2),
with exponential decay of DA between updates.

The synaptic conductance gk(t) to the kth striatal neu-
ron from its cortical input signal is augmented by gk(t) ←
gk(t) + wk(t) if a cortical spike occurs at time t (Baladron,
Nambu, & Hamker, 2017). Weight wk(t) evolves as w′k(t) =
αwEk(t) f (DA(t))(wmax−wk(t)) where f (DA(t)) is either DA
or DA/(c+ |DA|) if the kth neuron is I or D pathway, respec-
tively. The sign of αw may depend on whether the striatal
neuron has a D1 or D2 dopamine receptor, Ek(t) denotes an
eligibility based on comparison of previous cortical and stri-
atal spike timing (Gurney, Humphries, & Redgrave, 2015; Bal-
adron et al., 2017), and the sign of DA is determined by (Eqs.
1-2). Time courses of these components, for a simplified sim-
ulation of a population of striatal neurons whose synchrony
drives selection between two actions with distinct reward out-
comes according to a phenomenological rule, show learning
of action values and corresponding synaptic weight trajecto-
ries (Fig. 2).

Spiking CBGT Network
To determine how increased asymmetries in the cortical in-
fluence on D and I pathways impact the decision process by
which a single action is selected, the full CBGT network was
used to simulate responses in a simple two-alternative forced
choice decision task (see (Wei, Rubin, & Wang, 2015)). The
relative asymmetry in D and I pathway efficacy was deter-
mined based on the relative corticalstriatal synaptic weights
from the STDP simulations following a low (0.65), medium
(0.75), or high (0.85) reward probability for leftward decisions.
On each trial, the action selected and response time (RT)
of the decision were determined when the thalamic popula-
tion of one of the action channels exceeded a threshold of
30Hz. Three experiments (N=2500 trials/experiment) were
performed with either low, medium, or high weight ratios for
cortical inputs to D and I neurons (see STDP model), captur-
ing the post-training effects of DA under different reward-to-
penalty regimes (Fig. 3).

Drift Diffusion Model (DDM) Fits
The RT distributions generated from the spiking CBGT net-
work were then fit to a DDM model (Wiecki, Sofer, & Frank,
2013), in each case leaving either a single or a pair of param-
eters free to be fit across D/I conditions. Based on fits of the
DDM to the distribution of correct and error RTs produced by
the network in each condition, we found that increasing reward
probability led to an increase in drift-rate (v ) of evidence ac-
cumulation toward the correct (upper; left) decision threshold,
as well as a greater separation of correct and incorrect (lower,
right) boundaries (a). While this combination of drift-rate and
boundary height effects provided the best account of the sim-

Figure 2: Corticostriatal synaptic plasticity in the two-
alternative forced choice task. A) Striatal spikes yield in-
creases in eligibility and possibly action performance (green
dots: larger reward; red dots: smaller reward), resulting in
changes in DA, weights, and action value estimates Q. B)
Greater value of action L drives greater synchrony in D path-
way neurons for action L. C) Values Q converge to reward
levels for both actions, while weight ratios wD/wI also evolve.
D) Action L, with a higher reward value, is performed more
than action R.

ulated behavior across conditions, we found that v and z (the
initial bias towards one decision boundary or the other) pro-
vided a significant improvement in fit beyond that afforded by
drift-rate alone (e.g., the best-fitting single parameter model).
We next refit the v,a and v,z models to the same simulated
behavioral dataset as in the previous rounds, with the addi-
tion of different trialwise measures of striatal activity included
as regressors for one of the two free parameters in the DDM.
For each regression DDM (N=24), one of the summary mea-
sures shown in Figure 4B-C was regressed on v, and another
regressed on either a, or z, with separate regression weights
estimated for each level of reward probability. The relative
goodness-of-fit afforded by all 24 regression models is visu-
alized in Figure 4 (lower panel), revealing model II, with the
difference in left and right D pathways mapping onto v and
average activity of all I pathways mapping onto a, as the clear
winner with an overall DIC=18860.37, and DIC=9716.17 com-
pared to a null model.



Figure 3: Striatal pathway dynamics and behavioral effects
of reward probability in a spiking CBGT network. A) Time
courses show the average population firing rates for left
(black) and right (red) D (top) and I (bottom) MSNs. B-C)
Summary statistics of D and I population firing rates were
extracted on each trial and included as trial-wise regressors
on parameters of the DDM, allowing specific hypotheses to
be tested about the mapping between neural and cognitive
mechanisms. In B) lighter colored bars show the summed dif-
ference between D firing rates in the left and right action chan-
nels and where the darker colored bars show the summed dif-
ference between D and I firing rates in the left action channel.
In C) lighter colored bars show the difference between I firing
rates in the left and right action channels and darker colored
bars show the average I firing rate (across left and right chan-
nels). D) Average accuracy (probability of choosing left) and
RT (left choices only) of CBGT choices across levels of re-
ward probability. E) RT distributions for correct choices across
levels of reward probability.

Discussion

Derived from a multilevel modeling approach, these re-
sults show how dopaminergic plasticity at local corticostriatal
synapses can alter the relative balance of D and I pathway
competition that, in turn, is reflected as changes in specific
parameters of cognitive algorithms of decision making. Asym-
metries in the efficacy of D, but not I, pathways maps to the
speed of information accumulation during decision making
while the overall efficacy of all I MSNs sets the level of in-
formation needed to gate a decision. These results provide
key insights into how plasticity in implementation-level mecha-
nisms in CBGT pathways can impact cognitive processes that
can be measured at the behavioral level.
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