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Abstract: 

Recent years have seen steady improvements in our ability to 
read out sensory inputs from fMRI brain response patterns –
so-called “fMRI mind-reading”. While visually distinct inputs, 
such as objects from different categories, can be accurately 
decoded and partially reconstructed from fMRI patterns, it has 
proved more difficult to distinguish visually similar inputs, such 
as different instances of the same category. Here, we apply a 
recently developed deep learning system to the reconstruction 
of face images from human fMRI patterns. We trained a 
variational auto-encoder (VAE) neural network using a GAN 
(Generative Adversarial Network) unsupervised training 
procedure over a dataset of > 200K celebrity faces. The auto-
encoder latent space provided a meaningful (topologically 
organized) 1024-dimensional description of each image. We 
then presented > 4000 face images to a human subject in the 
scanner, and learned a simple linear mapping between the 
multi-voxel fMRI activation patterns and the 1024 latent 
dimensions. Then we applied this mapping to novel test images, 
turning the obtained fMRI patterns into VAE latent codes, and 
ultimately the codes into face reconstructions. Qualitative and 
quantitative evaluation of the reconstructions reveal robust 
pairwise decoding (>90% correct), and a strong improvement 
relative to a baseline model relying on PCA decomposition. 
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Introduction 

Decoding sensory inputs from brain activity is both a 
modern technical challenge and a fundamental neuroscience 
enterprise. Multi-voxel fMRI pattern analysis, inspired by 
machine learning methods, has produced impressive “mind-
reading” feats over the last 15 years (Haxby et al., 2001; 
Carlson, Schrater, & He, 2003; Kamitani & Tong, 2005; Kay, 
Naselaris, Prenger, & Gallant, 2008). A notoriously difficult 
problem, however, is to distinguish brain activity patterns for 
visually similar inputs, such as objects from the same 
category, or distinct human faces (Kriegeskorte, Formisano, 
Sorger, & Goebel, 2007; Kaul, Rees, & Ishai, 2011; Axelrod 
& Yovel, 2015). Here, we propose to take advantage of recent 
developments in the field of deep learning. Specifically, we 
use a variational auto-encoder or VAE (Kingma & Welling, 
2014), trained with a Generative Adversarial Network (GAN) 
procedure (Goodfellow et al., 2014; Larsen, Sønderby, 
Larochelle, & Winther, 2015), as illustrated in Figure 1. The 

“face latent space” of the resulting network provides a 
description of numerous facial features that could 
approximate face representations in the human brain. In this 
latent space, faces and face features (e.g., maleness) can be 
represented as linear combinations of each other, and 
different concepts (e.g., male, smile) can be manipulated 
using simple linear operations (Figure 2). We reasoned that it 
could prove advantageous, when decoding brain activity, to 
learn a mapping between the space of fMRI patterns and this 
kind of latent space, rather than the space of image pixels.  

Figure 1. VAE-GAN Network Architecture. Three networks learn 
complementary tasks. The Encoder network maps a face image onto a latent 
representation (1024-dimensional), shown in red, which the Generator 
network converts into a novel face image. The Discriminator network (only 
used during the training phase) outputs a binary decision for each given 
image, either from the original dataset, or from the Generator output: is the 
image real or fake? Training is called “adversarial” because the 
Discriminator and Generator have opposite objective functions. (For 
simplicity, this diagram does not reflect the fact that the VAE latent space is 
actually a variational layer, which samples latent vectors stochastically from 
a probability distribution).  
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Figure 2. Latent space properties. The VAE latent space can be sampled 
and manipulated with simple linear arithmetic. The top row shows four 
original faces. The lower rows show the result of linear operations on the 
sample faces. For example, adding or subtracting a “smile vector” 	݉ݏଓ݈݁ሬሬሬሬሬሬሬሬሬሬሬሬԦ 
(computed by subtracting the average latent description of 1000 faces having 
a “no-smile” label from the average latent description of 1000 faces having 
a “smile” label) creates images of the original faces smiling or frowning (2nd 
and 3rd rows). The same operation can be done by adding or subtracting (a 
scaled version of) the average vector ݈݉ܽ݁ሬሬሬሬሬሬሬሬሬሬԦ (4th and 5th rows), making the 
original face more masculine or more feminine. In short, the network 
manipulates concepts, which it can extract from and render to pixel-based 
representations.  

Methods 

VAE architecture and GAN training 
We trained a “variational auto-encoder” (VAE) deep 

network (10 layers) using an unsupervised “generative 
adversarial network” procedure (GAN) for 15 epochs on a 
labeled database of 202,599 celebrity faces (CelebA dataset). 
During GAN training, 3 sub-networks learn complementary 
tasks (Figure 1). The Encoder network learns to map a face 
image onto a 1024-dimensional latent representation (red in 
Figure 1), which the Generator network can use to produce a 
novel face image; the Encoder is rewarded for making the 
output face image as close as possible to the original image. 
The Generator network learns to convert latent 1024-D 
vectors from the latent space into plausible face images. The 
Discriminator network (only used during the training phase) 
learns to produce a binary decision for each given image 
(either from the original dataset, or from the Generator 
output): is the image real or fake? The Discriminator and 
Generator have opposite objective functions: the 
Discriminator is rewarded if it can reliably determine which 
images come from the Generator (fake) rather than from the 
dataset (real); the Generator is rewarded if it can produce 
images that the Discriminator network will not correctly 
classify. At the end of training, the Discriminator network 

was discarded, and the Encoder/Generator networks were 
used as a standard auto-encoder. Specifically, we used the 
Encoder to produce 1024-D latent codes for each input face 
image shown to our human subject, and these codes served 
as the design matrix for the fMRI GLM (General Linear 
Model) analysis (see “Brain decoding” section below). We 
used the Generator to reconstruct face images based on the 
output of our “brain decoding” system. 

PCA model 
Principal Component Analysis (PCA) was used as a 

baseline (linear) model for face decomposition and 
reconstruction. Retaining only the first 1024 principal 
components (PCs), each image could be turned into a 1024-
D code to train our brain decoding system (as detailed below), 
and output codes could be turned back into face images for 
visualization using the inverse PCA transform.  

Figure 3. Brain decoding of face images based on VAE-GAN latent 
representations. A. The subject saw more than 4,300 faces (one 
presentation each) in a rapid event-related design. The same face images 
were also run through the “Encoder” network (as described in Figure 1) or a 
PCA decomposition, to obtain a 1024-dimensional latent face description. 
The “brain decoder” was a simple linear regression, trained to associate the 
1024-dimensional latent vector with the corresponding brain response 
pattern. This linear regression, with 1024 parametric regressors for the 
BOLD signal, produced a weight matrix W (1024 by nvoxels dimensions) 
optimized to predict brain patterns in response to face stimuli. B. In the 
“testing phase”, we presented 20 novel faces (at least 14 randomly 
interleaved presentations each) to the subject. The resulting brain activity 
patterns were simply multiplied by the transposed weight matrix WT (nvoxels 
by 1024 dimensions) and its inverse covariance matrix to produce a linear 
estimate of the 1024 latent face dimensions. The Generator network (Figure 
1) or an inverse PCA transform was then applied to translate the predicted 
latent vector into a reconstructed face image.  
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Brain decoding 
We trained a simple brain decoder (linear regression) to 

associate the 1024-D latent representation of face images 
(obtained by running the image through the “Encoder”, as 
described in Figure 1, or using a PCA transform as described 
above) with the corresponding brain response pattern, 
recorded when a human subject viewed the same faces in the 
scanner. This procedure is illustrated in Figure 3A. The 
subject saw more than 4,300 faces (one presentation each) in 
a rapid event-related design, and we used the VAE-GAN 
latent dimensions (or the image projection onto the first 1024 
PCs) as 1024 parametric regressors for the BOLD signal. The 
linear regression performed by the GLM analysis thus 
produced a weight matrix W (1024 by nvoxels dimensions, 
where nvoxels is the number of voxels in the brain region-of-
interest) optimized to predict brain patterns in response to 
face stimuli.  

To use this brain decoder in the “testing phase”, we simply 
inverted the linear system, as illustrated in Figure 3B. We 
presented 20 novel faces to the same subject, which had not 
been seen in the training phase. Each test face was presented 
at least 14 times (randomly interleaved) to increase signal-to-
noise ratio. The resulting brain activity patterns were simply 
multiplied by the transposed weight matrix WT (nvoxels by 
1024 dimensions) and its inverse covariance matrix to 
produce an estimate of the 1024 latent face dimensions. We 
then used the Generator network (as illustrated in Figure 1) 
to translate the predicted latent vector into a reconstructed 
face image. For the baseline PCA model, the same logic was 
applied, but the face reconstruction was obtained via inverse 
PCA of the decoded 1024-D vector.  

Results 
We used the VAE-GAN model described in Figure 1 to 

train a brain decoding system. During training (Figure 3A), 
the system learned the correspondence between brain activity 
patterns in response to numerous face images (more than 
4300 examples, involving 6 hours of scanning over 4 separate 
sessions) and the corresponding 1024-D latent representation 
of the same faces within the VAE network. The learning 
procedure assumed that each brain voxel’s activation could 
be described as a weighted sum of the 1024 latent parameters, 
and we simply estimated the corresponding weights via linear 
regression (GLM). After training (Figure 3B), we inverted 
the linear system, such that the decoder was given the brain 
pattern of the subject viewing a specific, novel face image as 
input (a face that was not included in the training set), and its 
output was an estimate of the 1024-dimensional latent feature 
vector for that face. The image of the face was then generated 
(or “reconstructed”) through the generative (VAE-GAN) 
neural network.  

We contrasted the results obtained from this deep neural 
network model with those produced by another, simpler 
model of face image decomposition: principal components 
analysis (PCA, retaining only the first 1024 principal 
components from the face celebrity dataset). The PCA model 
also describes every face by a vector in a 1024-dimensional 

latent space, and can also be used to reconstruct faces based 
on an estimate of this 1024-D feature vector.  

For both the deep neural network and PCA-based models, 
we defined a subset of the gray matter voxels as our “region-
of-interest”. Indeed, many parts of the brain perform 
computations that are not related to face processing or 
recognition; entering such regions in our analysis would 
adversely affect signal-to-noise. We included in our selection 
all 75,004 voxels that showed a significant response to visual 
stimulation (t-value>2.28 in a t-test for stimulation present 
vs. absent). In addition, we reasoned that certain voxels may 
only be activated by a small subset of our visual stimuli (think 
of a neuron population selectively responding to the 
“mustache” feature, which is only present in ~4% of faces); 
such voxels would most likely not be included based on the 
previous criterion. We therefore defined another voxel 
selection criterion, based on a comparison of the residual 
variances of (i) a baseline GLM model with only a face 
present/absent regressor, and (ii) the full GLM model 
encompassing the 1024 face regressors. 88,121 additional 
voxels were included based on this criterion, for a total of 
163,125 voxels in the region-of-interest (for the PCA model, 
the total was similar: 169,407 voxels). The selected voxels 
are depicted in Figure 4. It is important to highlight that the 
above voxel selection criteria were applied only to the 4,300 
training face images, but not to the 20 test images; therefore, 
the decoding analysis does not suffer from “circular 
reasoning” issues (Kriegeskorte, Simmons, Bellgowan, & 
Baker, 2009). 

 

 
 
Figure 4. Voxels selected for brain decoding. 163,125 voxels were selected 
based on either their visual responsiveness, or their GLM goodness-of-fit 
during the brain decoder training stage (Figure 3A). The color code (red to 
yellow) reflects the goodness-of-fit. Occipital and frontal poles are marked 
“occ.” and “front.” respectively. 

 
Examples of the reconstructed face images from the test 

image set are shown in Figure 5. Only the VAE-GAN model 
but not the PCA model could reconstruct an acceptable 
likeness of the original faces. We quantified the performance 
of our brain decoding system by correlating the brain-
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estimated latent vectors of 20 faces with the 20 actual vectors, 
and used the pairwise correlation values to measure the 
percentage of correct classification. For each of the 20 test 
faces, we compared the decoded 1024-D vector to the 
ground-truth vector from the actual test image, and to that of 
another test image: brain decoding was “correct” if the 
correlation with the actual vector was higher than with the 
other vector. This was repeated for all (20*19) pairs of test 
images, and the average performance compared to chance 
(50%) with a binomial test. Reconstructions from the GAN 
model achieved 92% classification (p<10-10), while the PCA 
model only reached 77.5% (still highly above chance, but 
much below the GAN model, p<10-10). 
 

 
Figure 5. Examples of face reconstructions. Top row: 5 examples of 
images (among the 20 test images) and their reconstructions from a brain 
decoder based on the VAE-GAN model (middle row), or based on a PCA 
decomposition of the face dataset (bottom row). The quality of brain 
decoding was quantified with a pairwise pattern classification, and the 
average performance compared to chance (50%) with a binomial test. Brain 
decoding from the VAE-GAN model achieved 92% correct performance 
(p<10-10), the PCA model only 77.5% (p<10-10). 

Discussion and Conclusion 
We found that we could take advantage of the expressive 

power of deep neural networks (in particular, VAEs and 
GANs) to provide a better image space for linear brain 
decoding. Compared to PCA, which operates in pixel space, 
our approach produced qualitatively and quantitatively 
superior results. In particular, we could reliably distinguish 
the fMRI pattern evoked by one face from another, an 
outcome which had so far proved elusive (Kriegeskorte et al., 
2007; Kaul et al., 2011; Axelrod & Yovel, 2015).  

One explanation for our method’s performance could be 
that the topology of the VAE-GAN latent space is ideally 
suited for brain decoding. We already know that this space 
supports linear operations on faces and facial features (Figure 
2). We also know that, by construction (due to the variational 
training objective of the VAE, and the generative objective 
of the GAN), nearby points in this space map onto similar-
looking but always visually plausible faces. This latent space 

therefore makes the brain decoding more robust to small 
mapping errors. In addition to these technical considerations, 
it might simply be that the VAE-GAN latent space is 
topologically similar to the space of face representations in 
the human brain. This speculation could easily be tested in 
the future, for example using Representational Similarity 
Analysis or RSA (Kriegeskorte et al., 2008). 

Our approach could readily be extended from faces to other 
stimulus domains where GANs have proved relevant: for 
example, flowers, shoes, natural scenes or indoor scenes. 
Within the realm of faces, the current brain decoding model 
could be applied to the visualization of the facial feature 
selectivity of any voxel or ROI in the brain (simply by 
running corresponding columns of the W matrix into the face 
Generator network). The approach could also serve to 
investigate the brain representation of behaviorally important 
facial features, such as gender, race, emotion or age (by 
deriving the corresponding 1024-D latent vector, e.g. 	݉ݏଓ݈݁ሬሬሬሬሬሬሬሬሬሬሬሬԦ 
in Figure 2, and correlating it with each column of the W 
matrix). Finally, the decoding system could be extended to 
the reconstruction of faces that are not seen but imagined: this 
would be a true “mind-reading” achievement.  
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