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Introduction 

Electrical brain stimulation is currently being investigated 
as a potential therapy for neurological disease. However, 
opportunities to optimize and personalize such therapies 
are challenged by the fact that the beneficial impact (and 
potential side-effects) of focal stimulation on both 
neighboring and distant regions is not well understood. 
Here, we hypothesize that the effects of simulation will 
propagate along white matter tracts to affect change in the 
activity of distal regions. Specifically, we use network control 
theory to build a formal model of brain network function 
that makes explicit predictions about how stimulation 
spreads through the brain's white matter network and 
influences large-scale dynamics. We test these predictions 
using combined electrocorticography (ECoG) and diffusion 
weighted imaging (DWI) (Fig 1A) data from patients with 
medically refractory epilepsy undergoing evaluation for 
resective surgery, and who volunteered to participate in an 
extensive stimulation regimen (Fig 1B). We posit a specific 
model-based manner in which white matter tracts constrain 
stimulation, defining its capacity to drive the brain to new 
states, including states associated with successful memory 
encoding (as defined by a previously trained and validated 
classifier). In a first validation of our model, we find that the 
true pattern of white matter tracts can be used to more 
accurately predict the state transitions induced by direct 
electrical stimulation than the artificial patterns of a 
topological or spatial network null model. We then use a 



targeted optimal control framework to solve for the optimal 
energy required to drive the brain to a given state (Fig 1C). 
We show that, intuitively, our model predicts larger energy 
requirements when starting from states that are farther 
away from a target memory state. We then suggest testable 
hypotheses about which structural properties will lead to 
efficient stimulation for improving memory based on energy 
requirements. We show that the strength and homogeneity 
of edges between controlled to uncontrolled nodes, as well 
as the persistent modal controllability of the stimulated 
region, predict energy requirements. Our work 
demonstrates that individual white matter architecture 
plays a vital role in guiding the dynamics of direct electrical 
stimulation, more generally offering empirical support for 
the utility of network control-theoretic models of brain 
response to stimulation. 
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Figure 1: (A) Depiction of network construction and definition of brain state. (Left) We segment subjects' diffusion 
weighted imaging data into N=234 regions of interest using a Lausanne atlas. We treat each region as a node in a 
whole-brain network, irrespective of whether or not the region contains an electrode. Edges between nodes 
represent mean quantitative anisotropy along the streamlines connecting them. (Right, Top) Practically, we 
summarize the network in an NxN adjacency matrix. (Right, Bottom) A brain state is defined as the Nx1 vector 
comprising activity across the N regions. Any element of the vector corresponding to a region with an electrode is 
defined as the band-limited power of ECoG activity measured by that electrode. Each brain state is also associated 
with an estimated probability of being in a good memory state, using a previously validated machine learning 
classifier approach. (B) A schematic of a single stimulation trial. First, ECoG data is collected for 500 ms. Then, 
stimulation is applied to a given electrode for a variable duration. Finally, ECoG data is again collected after the 
stimulation. (C) A schematic of the open loop and optimal control paradigms. In the open loop design, energy u(t) is 
applied in silico at the stimulation site to the initial, pre-stimulation brain state x(0). The system will travel to some 
other state x(T) as stipulated by our model of neural dynamics, and we will measure the similarity between that 
predicted state and the empirically observed post-stimulation state. In the optimal control design, the initial brain 
state x(0) has some position in space that evolves over time towards a predefined target state x(T). At every time 
point, we calculate the optimal energy (u(t)) required at the stimulating electrode to propel the system to the target 
state. 
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