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Is this a funny-

Marco Polo looking unicorn?

Structure and parameters

Parameter learning: what do unicorns
tend to look like?

Unicorn space
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Structure and parameters

Structure learning: what kinds of animals

exist?
Rhino space

Unicorn space
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Central problem of structure
learning

What's out there?
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What is structure learninge

How many clusterse

What is structure learninge

How many featurese
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What is structure learninge
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The big picture

« Bayes’ rule tells us how to infer
hypotheses given data.

« But where do hypotheses come from?

« We can apply the same Bayesian
principles to the discovery of
hypothesis spaces.

Nonparametric Bayes

 Priors on hypothesis spaces need to be
sufficiently rich fo accommodate
complex data, but must also prefer
simpler hypotheses (to avoid overfitting).

« Nonparametric Bayes: priors on “infinite”
hypothesis spaces.
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What's nonparametric about
nonparametric Bayes?

(a) Parametric (b) Nonparametric (c) Nonparametric Bayesian
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Building blocks

« Mixture models (clustering): Chinese
restaurant process

« Latent feature models (factor analysis):
Indian buffet process

« Function learning (regression):
Gaussian process



PART 1: MIXTURE MODELS AND

CLUSTERING

Mixture models

=

\

How many clusterse

Each cluster corresponds to a
mixture component: a distribution

over data

11/28/2018



11/28/2018

Mixture models

- N - How many clusters?
&z

P(z|z) < P(z|z)P(2)

Likelihood of data x  Prior probability of
given cluster z cluster z

Chinese restaurant process

Prior over clusters, where the number of
clusters is unbounded (formally:
distribution on partitions of the integers)
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Chinese restaurant process

1. First customer (datapoint) enters and
sits at the first table (cluster)

2. Subsequent customers enter and sit at
table k with probability
N, if kis old

Q if k£ is new

I

Concentratfion parameter: larger
values produce more clusters

Pz = k) x {

Social structure learning

« Individuals are organized into latent
groups.

» Beliefs about latent groups determine
social influence on decisions.

« Because latent groups are
unobservable, people reason about
them probabilistically.
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Social influence on choice

» Observing the choices of others is @
rich source of information about one’s
own preferences

Social influence on choice

» Observing the choices of others is @
rich source of information about one’s
own preferences

— What movies to see

11
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Social influence on choice

» Observing the choices of others is @
rich source of information about one’s
own preferences
— What movies to see
— What music to listen to

Social influence on choice

» Observing the choices of others is @
rich source of information about one’s
own preferences
— What movies to see
— What music to listen to
— What food to eat
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Social learning in animals

Norway rats sniffing one another’s breath to
determine what food a conspecific has recently
eaten. The rats subsequently show an enhanced
preference for that food that lasts for weeks.

The similarity principle

» Social influence is stronger from similar
than from dissimilar others.

» Brock (1965) showed that a salesman
who reported his own paint
consumption to be similar to @
customer’s sold a larger quantity of
paint.
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A dyadic similarity model

Each agent’s influence on a ==
subject’s choice is weighted by vE
the degree of choice overlap. '

Strong similarity Weak similarity

Dyadic similarity vs. latent
groups
| will demonstrate that the dyadic

similarity model is too simple to explain
social decision making.

« People seem to be guided by
inferences about latent groups.

11/28/2018
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Experimental design

(A) Self choice (B) Other choice + feedback

Which@novie@vould®} WhichBnovieBvould®  WhichEnovieBvouldm
youltatherBee?E AnnelfiatherBee?d BillatherBee?d

(C) Mystery choice
Which@novie@vould¥ouatherBee?d

Kg ‘@‘I‘

Prediction

The dyadic similarity model predicts that
agents with equal choice overlap
should show no differential social
influence.
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Experimental design
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Model
schematic

Likelihood: Groupings have high
probability when individuals
within the same group tend to
make the same choices.

Prior: Simpler groupings are
preferred over more complex
ones.
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Experimental design

By changing the choice patterns of agent C, we
can quantitatively test the model predictions.

P
A\C/B
/ \

Experimental results
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The development of social

influence

»

z.2) =

Mismatched Matched

Design of Repacholi & Gopnik (1997)

Simulation
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Diverse desires training

Exposing 14-month-olds to individuals with diverse
desires gives them social structure model of 18-month-
olds

Data Model
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Extensions

« Learning cross-cutting categories:
CrossCat

 Clustering relations: the infinite
relational model

« Multi-level category learning: the
nested CRP

11/28/2018
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PART 2: LATENT FEATURE
MODELS

What is a feature?

Many models of human cognifion assume
objects are represented in terms of abstract
features.

What are the features of this objecte

What determines which features we
identify?

21
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Latent feature models

(a) i I
y1 y2 NES
A—» [T 700 1 1 0]
X 7 v \ (
Y4 Y5 Y6
(b) D K
D
N X — N| Z X K Y

(Austerweil & Griffiths 2011)

The Indian buffet process

Prior on feature ownership matrices with
an unbounded number of features:

1.

First customer (datapoint) enters and
samples Poisson(a) number of dishes
(features)

. Customer n samples dish k with

probability m,/n and samples a new
dish with probability a/n
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Comparison of CRP and IBP

Chinese Restaurant Process Tables
1 2 3
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Indian Buffet Process
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The problem of summation in
classical conditioning

» Elemental theories of conditioning
assume that elemental predictions
summate: if you like bananas and ice
cream separately, you'll like them
even more together.

« Example: overexpectation

A+
B+
AB+
B?

Even though AB is reinforced, less
reinforcement is received than
expected, and hence the elemental
predictions will be weakened

11/28/2018

23



11/28/2018

The problem of summation in
classical conditioning
« However, sometimes summation does

not occur. Instead, the stimulus
compound acts configurally.

« Example: negative patterning

+
A Animals can learn that the compound
B+ predicts no reinforcement even when
AB-  both elements predict reinforcement.
Be

When does summation occure

same modality different
modality
A []ﬂ))) — R [ﬂ))) —R
B ) — R @ — R
) @)— 2 | ) G — 2
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A model with multiple
simultaneous latent causes

Latent causes

oo

N \

8 Reward

2 A

) Summation over
R = Wg 2k + €

% B (o D g Rk latent causes

dimension 1

Consequential
regions

Soto, Gershman, & Niv (2014), Psych Review

The size principle

+ If data are sampled uniformly from a
concept’s extension (strong sampling),
then concepfts with large extensions will
receive less evidential support from data.

* This is a form of Bayesian Occam’s razor:
concepts that are more “complex” (can
predict more patterns of data) place less
probability mass on any particular
pattern and hence are disfavored
relative to concepts that are “simpler”
(predict only the observed patterns).
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When does summation occure

Dimension 2

same modality
modality
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PART 3: FUNCTION LEARNING

What function generated these
datae

27
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Gaussian processes

y=[fx)+e [~ GP(m,k)

GPs can be thought of a distributions over functions
* m(x) is the mean function
« Kk(x,x') is the covariance function (kernel)

The kernel specifies the smoothness of the function

Given data, posterior predictions of function values at
arbitrary inputs are computable in closed-form

Samples from GPs with different
kernels

28



Modeling functions with GPs

A sample from the prior for each covariance function:

Corresponding predictions, mean with two standard deviations:

N

10 A
—/| 15 AN

£

ARV

We can use Bayesian model selection to choose the optimal
covariance function (and its parameters)

Human function learning

Linear Exponential Quadratic
1 1 1
0.8 0.8 - 0.8
0.6 0.6 0.6
> 8 \
0.4 0.4, 0.4 '\.
4 ) mm— Training
0.2 o2}, 0.2f, | =—People
iieriModel £
0 0 0
0 0.5 1 0 0.5 0 0.5 1
X X X

Lucas et al. (2015)
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Structure and compositionality

Airline passengers
700

600 4
500 +
400 -

300

passenger volume

200 BT

International airline monthly

100 £t - ‘ ‘ ‘ ; ;
1950 1952 1954 1956 1958 1960

Year

Compositional functions

« To capture compositionality of
functions, we need a grammar
consisting of:

— Functional atoms (base kernels)
— Compositional operators (maps from sets
of functions to new functions)

« Note that we don't specify the
functions themselves—only priors on
functions (GPs).

11/28/2018
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Functional atoms

Five base kernels

VAN I N

Squared Periodic Linear Constant White
exp. (SE) (PER) (LIN) ©) noise (WN)

Encoding for the following types of functions

B

Smooth Periodic Linear Constant Gaussian

functions functions functions functions noise

(Lloyd, Duvenaud, Tenenbaum, Ghahramani)

Compositional operators

Multiplication OM g OM W

drati locall
LIN x LIN qua Fanc SE x PER OC? y
functions periodic
Addition ¢
0
LIN + PER Periodic plus SE 4+ PER periodic plus
linear trend smooth trend

(Lloyd, Duvenaud, Tenenbaum, Ghahramani)
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lllustration

Raw data Full model posterior with extrapolations
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Airline passengers

1950 1952 1954 1956 1958 1960 1962 1950 1952 1954 1966 1958 1960 1962
Four additive components have been identified in the data
> A linearly increasing function.

> An approximately periodic function with a period of 1.0 years and
with linearly increasing amplitude.

» A smooth function.

> Uncorrelated noise with linearly increasing standard deviation.

(Lloyd, Duvenaud, Tenenbaum, Ghahramani)

An alternative: spectral mixture

Fourier transform of a stationary kernel (only
depends on x-x') yields a spectral representation:

k(:lj,[lj‘/) _ /5(8)627ri37(;c33/)d8

Roughly speaking, the spectral density S(s)
specifies the conftribution of the eigenfunction
with frequency s.

We can define flexible kernels by directly
parameterizing the spectral density.
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Airline Passenger Numbers
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An alternative: spectral mixture

*
95% CR —— Spectral Mixture
—Train 14
Test
—RBF =
—5M @12
f=
@
S0
[
2 8
o
[2)
g 6f
—
4}
2+
L L , 0 L L L L i
0 50 100 150 0 01 0.2 0.3 0.4 0.5
Time (months) Frequency (1/month)

Derive kernels by approximating the spectral

density with a mixture of Gaussians.

This function is smooth and flexible but non-

compositional. (Wilson & Adams, 2013)

Extrapolation experiment

Choose a pattern completion

Number of trials left: 20

Spectral mixture RBF Compositional

Functions were drawn from the compositional grammar
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Results

1.00

=1

S 075

2

Q

§ o050

5

&

& 0.25 -
0.00 i

Compositional RBF Spectral
Kernel

Compositional extrapolations are preferred

to non-compositional extrapolations.
Schulz et al. (2017)

Pattern completion (2)

« Same as first experiment, but now
functions are sampled from the
spectral mixture kernel.

11/28/2018
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Results

1.00

=
L 075
=}
<
o
& 050
=
=}
& —4
£ 025

0.00

Compositional Spectral

Kernel

Compositional functions are favored even when the
ground fruth is non-compositional

Markov chain Monte Carlo with
people
« Generate samples from subjects’

posterior by having them simulate a
Markov chain.

» Provides a richer picture of their
inductive bias.

11/28/2018
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Results
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Real-world functions
Real world data
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Manual pattern completion

 Instead of discrete choices, subjects

 We used the root mean squared error
(RMSE) from each kernel’s predictions

Manual pattern completion

RMSE

completed the function manually.

as an index of that kernel’s fit.

75

50

25

Interpolation

R

Compositional RBF

Spectral

RMSE

90
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30

Extrapolation

4

Compositional RBF

Spectral
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Predictability

« Do people find compositional
functions more predictable?¢

Predictability results

Group - Compositional & Spectral

70

60

50

Mean Judgement

40

30

50 60 70 80 90 100

Sample Size
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Beyond function learning

« We next explored the implications of
compositional functions for several
other domains:

— Numerosity perception
— Change detection
— Short-term memory

Statistical regularities reduce
numerosity estimates

Pairs Singles

L 3 - Structured
@ @ o Structured LIL) : = D : ol ale : 2 - Random
(N=20) g . eo/e oo a1
<><§). ® ° [
a2 0
<
® 0 0 £l
oo (@ 0 ® 0 £
Random ° o [o [o[e o (ol w2
(N=20) D ole 0o 3
e 4
Number Estimation |10 I 12 10 11 12 13 14 15 16 17 18 19 20
Time. Numerosity Level
In structured displays, certain color
pairs co-occurred, whereas in
random displays the co-occurrence
statistics were uniform. (Zhao & Yu, 2016)
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Numerosity paradigm

Number of trials left: 40

A

How many points were on the screen?

!/

A

0.0
-0.3
=
(9]
~
|
L
< —
E
7
m
-09

Displays sampled from compositional functions are
perceived as less numerous than displays sampled from

Results

+

Compositional Spectral

spectral mixture functions.
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Change detection

Statistical regularities also aid change detection.

(Brady & Tenenbaum, 2013)

Functional change detection

Intial (1000ms) Interstimulus interval (500ms) Test (1000ms)

Compositional-Changed

Compositional-No change

11/28/2018
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Results

Structure - Compositional = Spectral

09

5 0.8

]

=

o

Q

§ o7

=

o

o

o

=

~ 06
05

No change Small change  Large change

Easier to detect changes in displays sampled
from compositional functions.

Computational modeling

Posterior probability that two displays were generated
by different functions:

P(D1,Da|f1 # f2)

P(f1 # f2|D1,D2) = P(Dy,Ds|f1 # f2) + P(D1,Ds|f1 = f2)

We can use the GP model to compute this
probability in closed-form for any two displays.

42



Model fit

1.00

0.75

0.50

Correlation

0.25

0.00

Compositional

Short-term

(Brady, Konkle & Alvarez, 2009)

Colors remembered

Spectral

memory

[l Color pairs repeat over time
[ Color pairs are random
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Experiment block

Statistical regularities aid visual short-term memory.
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Functional short-term memory

Compositional-Old

Sternberg paradigm a

S4 (1000ms)

S3 (1000ms) Interstimulus Compositional-New

S2 (1000ms) s w4 interval (500ms)
S1 (1000ms) . A 3

A ]
Spectral mixture-Old
Spectral mixture-New
= A
: )‘u“""\e; -u_
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g 08
=
Q
S
=
g
g o7 T
o
]
=
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0.6

2 3 4 5 6

Set size

Compositional functions are more memorable/compressible.
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Computational modeling

Posterior probability that a probe display belongs to the study list:

N
P(f € fin|Y) o< Y P(f' = fa)P(Dn, D'|f" = fn)
n=1

GP model can be used to compute this in closed-form.

Model fit

0.75

0.50

Correlation

0.25

-I

Compositional Spectral

0.00
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PART 4: PUTTING IT ALL
TOGETHER

Composing the building blocks

« Mixture models, latent feature models,
and function learning models can all
be combined in interesting ways to
capture more complexity

« Case study: motion perception

46
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Case study: motion perception

How do we parse a moving scene?

Complex motions are
composed of simpler motions

47
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Motion relative to
the background

Motion relative
to the frain

Motion relative
to Dr. Octopus

48



Johansson's seminal
contribution

CONFIGURATIONS
IN EVENT PERCEPTION

An Experimental Study

1950

11/28/2018
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Vector analysis

1 I 1

PROXIMAL STIMULUS PERCEPT VECTOR ANALYSIS
A A
o)

/ \
a
&
«<———— 0B <«———08
b b/

Johansson (1950)

Vector analysis

'—»

‘/'

.—»
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Vector analysis

:

T
71

Vector analysis

« Many different vector interpretations
of a given motion pattern. How does
our visual system choose one?
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Vector analysis

« Many different vector interpretations
of a given motion pattern. How does
our visual system choose one?

« Appeal to “principles”

— Minimum principle (Restle, 1979): simple
motions preferred

— Adjacency principle (Gogel, 1974): assign
dots to nearest reference frame

« Need for a unifying computational
theory

Bayesian motion

perception
“slow and smooth” ‘yl
Weiss & Adelson (1998) L
p:v

s ﬂ 5&% i
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Bayesian vector analysis

Bayesian vector analysis

Motion tree
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Bayesian vector analysis

Motion tree

P(tree|images) o
P(images|tree) P(tree)

A) Stimulus B) Percept
2 O
C) Model D) Motion tree

—

I

Gershman, Tenenbaum & Jaekel (2016)
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Duncker wheel

A . cycloid i

rotation

r@ m ’rrinslo’rion

Simulations of the Duncker
wheel

Stimulus

YYN

Model

Y YN
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Simulations of the Duncker
wheel

Stimulus

Other phenomena

- -
—».*H d
Motion contrast . a” “ao
-b—) —
Biological motion e
A
R
MR
1l (1> 0
y { Q Transparent motion s *

/

Gershman, Tenenbaum & Jaekel (2016)
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Can we discover structure

automatically?

Can we discover structure

A Structural | Form
Partitio OOO o
Ch 0O+0+0+0
ord 6’1?{5:37
Ring m

Jol

automatically?

Coneameprocess B ¢
wonm ol o0= ¢ Graph grammars
R oreo=op (Kemp & Tenenbaum, 2008)
ol C e - 3
o Y %
-0 = © @;993# R
Chain TI Chain D o <2
<8- <o
oo e
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Can we discover structure
automatically?

Automatic composition of
modeling motifs

low-rank approximation G! GG+ G
custering G! MG+ G|GMT + G
M! MG+G Model grammars
linear dynamics G! CG+ G|GC' + G (Grosse et al, 2012)
sparsity G! exp(G)° G
binary factors G! BG+ G|GB' + G

B! BG+ G
M! B

59
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Automatic composition of
modeling mofifs

(exp(GG+G) o G)G+ G

(MG+G)(GMT + @)+ @G dependent gaussian scale mixture

Bayesian clustered tensor factorization (c.g. Karklin and fewicki, 2005)

(Sutskever et al., 2009) B(GBT LG+ G
. binary matrix factorization (exp(G) o G)G +G
(Meeds et al., 2006) sparse coding

\ (e.g. Olshausen and Field, 1996)
M(GMT +G)+ G (CG+G)G+G

co-clustering BG+G GG+ G linear dynamical system
(e.g. Kemp et al., 2006) binary features low-rank approximatioy

(Griffiths and (Salakhutdinov and
Ghahramani, 2005) Mnih, 2008) CG+G
MG+ G +

random walk
clustering
\
G

no structure

Summary

» Nonparametric Bayesian models can be
used to flexibly capture structure that is
“lust right” (not too simple or complex)

» Growing experimental literature
suggesting the brain implements these
computational principles

» Basic building blocks (clusters, features,
and functions) can be composed to
capture a wider range of structures
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Further reading

+ Austerweil, Gershman, Tenenbaum, & Giriffiths (2015).
Structure and flexibility in Bayesian models of
cognition. Oxford Handbook of Computational and
Mathematical Psychology.

+ Gershman & Blei (2012). A tutorial on Bayesian
nonparametric models. Journal of Mathematical
Psychology.

+ Gershman & Niv (2010). Learning latent structure:
carving nature at its joints. Current Opinion in
Neurobiology.
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