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Is this a funny-

looking unicorn?Marco Polo

Structure and parameters

Parameter learning: what do unicorns 

tend to look like?

Unicorn space

?
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Structure and parameters

Structure learning: what kinds of animals 

exist?

Unicorn space

Rhino space

?

Central problem of structure 

learning

What’s out there?
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What is structure learning?

How many clusters?

What is structure learning?

Reconstruction

How many features?



11/28/2018

5

What is structure learning?

Which structural form?

What is structure learning?

Which functional form?
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The big picture

• Bayes’ rule tells us how to infer 

hypotheses given data.

• But where do hypotheses come from?

• We can apply the same Bayesian 

principles to the discovery of 

hypothesis spaces.

Nonparametric Bayes

• Priors on hypothesis spaces need to be 

sufficiently rich to accommodate 

complex data, but must also prefer 

simpler hypotheses (to avoid overfitting).

• Nonparametric Bayes: priors on “infinite” 

hypothesis spaces.
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What’s nonparametric about 

nonparametric Bayes?

(a) (b) (c)Parametric Nonparametric Nonparametric Bayesian

Building blocks

• Mixture models (clustering): Chinese 

restaurant process

• Latent feature models (factor analysis): 

Indian buffet process

• Function learning (regression): 

Gaussian process
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PART 1: MIXTURE MODELS AND 

CLUSTERING

Mixture models

How many clusters?

Each cluster corresponds to a 

mixture component: a distribution 

over data
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Mixture models

How many clusters?

Likelihood of data x

given cluster z
Prior probability of 

cluster z

Chinese restaurant process

Prior over clusters, where the number of 

clusters is unbounded (formally: 

distribution on partitions of the integers)
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Chinese restaurant process

1. First customer (datapoint) enters and 

sits at the first table (cluster)

2. Subsequent customers enter and sit at 

table k with probability

Concentration parameter: larger 

values produce more clusters

Social structure learning

• Individuals are organized into latent 

groups.

• Beliefs about latent groups determine 

social influence on decisions.

• Because latent groups are 

unobservable, people reason about 

them probabilistically.
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Social influence on choice

• Observing the choices of others is a 

rich source of information about one’s 

own preferences

Social influence on choice

• Observing the choices of others is a 

rich source of information about one’s 

own preferences

– What movies to see
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Social influence on choice

• Observing the choices of others is a 

rich source of information about one’s 

own preferences

– What movies to see

– What music to listen to

Social influence on choice

• Observing the choices of others is a 

rich source of information about one’s 

own preferences

– What movies to see

– What music to listen to

– What food to eat
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Social learning in animals

Norway rats sniffing one another’s breath to 

determine what food a conspecific has recently 

eaten. The rats subsequently show an enhanced 

preference for that food that lasts for weeks.

The similarity principle

• Social influence is stronger from similar 

than from dissimilar others.

• Brock (1965) showed that a salesman 

who reported his own paint 

consumption to be similar to a 

customer’s sold a larger quantity of 

paint.
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A dyadic similarity model

Strong similarity Weak similarity

Each agent’s influence on a 

subject’s choice is weighted by 

the degree of choice overlap.

Dyadic similarity vs. latent 

groups

• I will demonstrate that the dyadic 

similarity model is too simple to explain 

social decision making.

• People seem to be guided by 

inferences about latent groups.
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Experimental design

Which	movie	would		
you	rather	see?	

Which	movie	would		
Bill	rather	see?	

(A) Self choice (B) Other choice + feedback 

Which	movie	would		
Anne	rather	see?	

Which	movie	would	you	rather	see?	

(C) Mystery choice 

Prediction

The dyadic similarity model predicts that 

agents with equal choice overlap 

should show no differential social 

influence.
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Experimental design

A	 B	
C	

P	

A	 B	

C	

P	

75%	agreement	 25%	agreement	

Gershman, Pouncy & Gweon (2017)

Results
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Model 

schematic

P
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Bayes’ rule
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G
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Likelihood: Groupings have high 

probability when individuals 

within the same group tend to 

make the same choices.

Prior: Simpler groupings are 

preferred over more complex 

ones.

Model simulation
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Experimental design

A BC

P

By changing the choice patterns of agent C, we 

can quantitatively test the model predictions.

Experimental results
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p < 0.05
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The development of social 

influence

Mismatched Matched

Design of Repacholi & Gopnik (1997)

Simulation
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Diverse desires training

Exposing 14-month-olds to individuals with diverse 

desires gives them social structure model of 18-month-

olds
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Extensions

• Learning cross-cutting categories: 

CrossCat

• Clustering relations: the infinite 

relational model

• Multi-level category learning: the 

nested CRP
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PART 2: LATENT FEATURE 

MODELS

What is a feature?

Many models of human cognition assume 
objects are represented in terms of abstract 
features.

What are the features of this object?

What determines which features we 
identify?
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Latent feature models

(Austerweil & Griffiths 2011)

The Indian buffet process

Prior on feature ownership matrices with 

an unbounded number of features:

1. First customer (datapoint) enters and 

samples Poisson(α) number of dishes 

(features)

2. Customer n samples dish k with 

probability mk/n and samples a new 

dish with probability α/n
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Comparison of CRP and IBP

A

B

C

. . .

. . .

Table 
1

Table 
2

Table 
3

Dish 
1

Dish 
2

Dish 
3

Chinese Restaurant Process

Indian Buffet Process
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The problem of summation in 

classical conditioning

• Elemental theories of conditioning 

assume that elemental predictions 

summate: if you like bananas and ice 

cream separately, you’ll like them 

even more together.

• Example: overexpectation

A+

B+

AB+

B?

Even though AB is reinforced, less 

reinforcement is received than 

expected, and hence the elemental 

predictions will be weakened
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The problem of summation in 

classical conditioning

• However, sometimes summation does 

not occur. Instead, the stimulus 

compound acts configurally.

• Example: negative patterning

A+

B+

AB-

B?

Animals can learn that the compound 

predicts no reinforcement even when 

both elements predict reinforcement.

When does summation occur?

R

R

?

R

R

?

same modality          different 

modality

A

B

AB
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A model with multiple 

simultaneous latent causes

dimension 1

d
im

e
n

si
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n
 2

A

B C
D

z1 z2

R

Latent causes

Reward

Summation over 

latent causes

Consequential 

regions

Z ~ IBP(α)

Soto, Gershman, & Niv (2014), Psych Review

The size principle

• If data are sampled uniformly from a 
concept’s extension (strong sampling), 
then concepts with large extensions will 
receive less evidential support from data.

• This is a form of Bayesian Occam’s razor: 
concepts that are more “complex” (can 
predict more patterns of data) place less 
probability mass on any particular 
pattern and hence are disfavored 
relative to concepts that are “simpler” 
(predict only the observed patterns).
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Explaining summation

Soto, Gershman, & Niv (2014), Psych Review
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PART 3: FUNCTION LEARNING

What function generated these 

data?
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Gaussian processes

GPs can be thought of a distributions over functions

• m(x) is the mean function

• k(x,x’) is the covariance function (kernel)

The kernel specifies the smoothness of the function

Given data, posterior predictions of function values at 

arbitrary inputs are computable in closed-form

Samples from GPs with different 

kernels
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Modeling functions with GPs

We can use Bayesian model selection to choose the optimal 

covariance function (and its parameters)

Human function learning

Lucas et al. (2015)
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Airline passengers

Structure and compositionality

Compositional functions

• To capture compositionality of 
functions, we need a grammar 
consisting of:
– Functional atoms (base kernels)

– Compositional operators (maps from sets 
of functions to new functions)

• Note that we don’t specify the 
functions themselves—only priors on 
functions (GPs).
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Functional atoms

(Lloyd, Duvenaud, Tenenbaum, Ghahramani)

Compositional operators

Addition

Multiplication

(Lloyd, Duvenaud, Tenenbaum, Ghahramani)
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Illustration

(Lloyd, Duvenaud, Tenenbaum, Ghahramani)

A
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e
 p

a
ss

e
n

g
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An alternative: spectral mixture

Fourier transform of a stationary kernel (only 

depends on x-x’) yields a spectral representation:

Roughly speaking, the spectral density S(s) 

specifies the contribution of the eigenfunction

with frequency s.

We can define flexible kernels by directly 

parameterizing the spectral density.
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An alternative: spectral mixture

(Wilson & Adams, 2013)

Derive kernels by approximating the spectral 

density with a mixture of Gaussians.

This function is smooth and flexible but non-

compositional.

Extrapolation experiment

Choose a pattern completion

Spectral mixture RBF Compositional

Functions were drawn from the compositional grammar
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Results

Compositional extrapolations are preferred 

to non-compositional extrapolations.
Schulz et al. (2017)

Pattern completion (2)

• Same as first experiment, but now 

functions are sampled from the 

spectral mixture kernel.
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Results

Compositional functions are favored even when the 

ground truth is non-compositional

Markov chain Monte Carlo with 

people

• Generate samples from subjects’ 

posterior by having them simulate a 

Markov chain.

• Provides a richer picture of their 

inductive bias.
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Results

Posterior distributions 

over functions favor 

compositional 

structures.

Real-world functions
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Manual pattern completion

• Instead of discrete choices, subjects 

completed the function manually.

• We used the root mean squared error 

(RMSE) from each kernel’s predictions 

as an index of that kernel’s fit.

Manual pattern completion

Interpolation Extrapolation
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Predictability

• Do people find compositional 

functions more predictable?

Predictability results
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Beyond function learning

• We next explored the implications of 

compositional functions for several 

other domains:

– Numerosity perception

– Change detection

– Short-term memory

Statistical regularities reduce 

numerosity estimates

(Zhao & Yu, 2016)

In structured displays, certain color 

pairs co-occurred, whereas in 

random displays the co-occurrence 

statistics were uniform.
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Numerosity paradigm

Results

Displays sampled from compositional functions are 

perceived as less numerous than displays sampled from 

spectral mixture functions.
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Change detection

(Brady & Tenenbaum, 2013)

Statistical regularities also aid change detection.

Functional change detection
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Results

Easier to detect changes in displays sampled 

from compositional functions.

Computational modeling

Posterior probability that two displays were generated 

by different functions:

We can use the GP model to compute this 

probability in closed-form for any two displays.
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Model fit

Short-term memory

Statistical regularities aid visual short-term memory.
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Functional short-term memory

Sternberg paradigm

Results

Compositional functions are more memorable/compressible.
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Computational modeling

Posterior probability that a probe display belongs to the study list:

GP model can be used to compute this in closed-form.

Model fit
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PART 4: PUTTING IT ALL 

TOGETHER

Composing the building blocks

• Mixture models, latent feature models, 

and function learning models can all 

be combined in interesting ways to 

capture more complexity

• Case study: motion perception
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Case study: motion perception

How do we parse a moving scene?

Complex motions are 

composed of simpler motions
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Motion relative to 
the background

Motion relative 
to the train

Motion relative 
to Dr. Octopus
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Johansson’s seminal 

contribution

1950
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Vector analysis

Johansson (1950)

Vector analysis
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Vector analysis

= +

Vector analysis

• Many different vector interpretations 

of a given motion pattern. How does 

our visual system choose one?
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Vector analysis

• Many different vector interpretations 

of a given motion pattern. How does 

our visual system choose one?

• Appeal to “principles”

– Minimum principle (Restle, 1979): simple 
motions preferred

– Adjacency principle (Gogel, 1974): assign 
dots to nearest reference frame

• Need for a unifying computational 

theory

Bayesian motion 

perception

image

likelihood 2 prior

posterior

Vy

Vx

likelihood 1 

Vy

Vx

 

Vy

Vx

Vy

Vx

Vy

Vx

Vy

Vx

x

“slow and smooth”

Weiss & Adelson (1998)
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Bayesian vector analysis

Bayesian vector analysis

Motion tree
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Bayesian vector analysis

Motion tree

Gershman, Tenenbaum & Jaekel (2016)
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Duncker wheel

cycloid

translation

rotation

A

B

Simulations of the Duncker

wheel
Stimulus

Model
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Simulations of the Duncker

wheel
Stimulus

Model

Other phenomena
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Gershman, Tenenbaum & Jaekel (2016)
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Can we discover structure 

automatically?

Can we discover structure 

automatically?

Graph grammars

(Kemp & Tenenbaum, 2008)
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Can we discover structure 

automatically?

Automatic composition of 

modeling motifs

model: first sample all of thecomponent matrices indepen-

dently from their corresponding priors, and then evaluate

the expression. The component priors are as follows:

1. Gaussian (G). Entries are independent Gaussians:

ui j ⇠Gaussian(0, λ− 1
i λ− 1

j ).

This is our most generic component prior, and gives a

way of deferring or ignoring structure.1

2. Multinomial (M). Rows are independent multinomi-

als, with one 1 and the rest 0’s:

⇡ ⇠Dirichlet (↵) ui ⇠Mult inomial(⇡ ).

This is useful for clustering models, where ui deter-

mines the cluster assignment for the i t h row.

3. Bernoulli (B). Entries are independent Bernoullis:

⇡ j ⇠Beta(a, b) ui j ⇠Bernoulli(⇡ j ).

This is useful for binary latent feature models.

4. Integration matr ix (C). Entries below the diagonal

are deterministically 1:

ui j = 1i ≥ j .

This isuseful for modeling temporal structure, asmul-

tiplying by this matrix has the effect of cumulatively

summing the rows. (Mnemonic: C for “cumulative.” )

We allow expressions consisting of addition, matrix multi-

plication, matrix transpose, elementwise multiplication (◦ ),

and elementwise exponentiation (exp). Someof thedimen-

sions of thecomponent matrices aredetermined by thesize

of the input matrix; the rest (the latent dimensions) are de-

termined automatically using the techniques of Section 4.

We observe that this notation for matrix decompositions

is recursive: each sub-expression (such as GM T + G

in the above example) is itself a matrix decomposition

model. Furthermore, the semantics is compositional: the

value of each expression depends only on the values of

its sub-expressions and the operations used to combine

them. These observations motivate our decision to definea

spaceof modelsusing acontext-freegrammar, aformalism

which is widely used for representing recursive and com-

positional structures such as languages.

1The precision parameters λ i and λ j are drawn from the dis-
tribution Gamma(a, b). If i indexes a data dimension (i.e. rows
correspond to rows of the input matrix), the λ i s are tied. This al-
lows the variance parameters to generalize to additional rows. If
i indexes a latent dimension, the λ i s are all independent draws.
This allows the variances of latent dimensions to be estimated.
The same holds for theλ j s.

G M GT

M GM GG

G ! GM T + G

G

G ! MG+ G

Figure 1: A synthetic example showing how an input matrix with
block structure can be co-clustered by fitting the matrix decom-
position structure M (GM T + G) + G. Rows and columns are
sorted for visualization purposes.

The starting symbol in our grammar is G, a structureless

model where the entries are assumed to be independent

Gaussians. Other models (expressions) are generated by

repeatedly applying one of the following production rules:

low-rank approximation G ! GG + G (1)

clustering G ! M G + G | GM T + G (2)
M ! M G + G (3)

linear dynamics G ! CG + G | GCT + G (4)
sparsity G ! exp(G) ◦ G (5)

binary factors G ! B G + G | GB T + G (6)
B ! B G + G (7)
M ! B (8)

For instance, any occurrence of G in a model may be re-

placed by GG + G or M G + G. Repeated application of

these production rules allows us to build hierarchical mod-

elsby capturing additional dependencies between variables

which were previously modeled as independent.

3.1 Examples

Wenow turn to several examples in which our simple com-

ponents and production rules give rise to a rich variety

of models from unsupervised learning. While the model

space is symmetric with respect to rows and columns, for

purposes of exposition, we will adopt the convention that

the rows of the input matrix correspond to data points and

columns corresponds to observed attributes.

Wealwaysbegin with the model G, which assumes the en-

tries of the matrix are i.i.d. Gaussian. Applying produc-

tions in our grammar allows us to capture additional struc-

ture. For instance, starting with Rule 2(a) gives the model

M G + G, which clusters the rows (data points). In more

detail, theM represents thecluster assignments, thefirst G

represents the cluster centers, and the second G represents

within-cluster variation. These three matrices are sampled

independently, the assignment matrix is multiplied by the

center matrix, and the within-cluster variation is added to

the result. By applying Rule 2(b), the clustering model can

beextended to co-clustering (Kemp et al., 2006), where the

columns (attributes) form clusters as well. In our frame-

work, this can be represented as M (GM T + G) + G. We

Model grammars

(Grosse et al, 2012)
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Automatic composition of 

modeling motifs

Summary

• Nonparametric Bayesian models can be 

used to flexibly capture structure that is 

“just right” (not too simple or complex)

• Growing experimental literature 

suggesting the brain implements these 

computational principles

• Basic building blocks (clusters, features, 

and functions) can be composed to 

capture a wider range of structures



11/28/2018

61

Further reading

• Austerweil, Gershman, Tenenbaum, & Griffiths (2015). 

Structure and flexibility in Bayesian models of 

cognition. Oxford Handbook of Computational and 

Mathematical Psychology.

• Gershman & Blei (2012). A tutorial on Bayesian 

nonparametric models. Journal of Mathematical 

Psychology.

• Gershman & Niv (2010). Learning latent structure: 

carving nature at its joints. Current Opinion in 

Neurobiology.


