
11/28/2018

1

Structure learning and the 

growth of skills

Anne Collins
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Central problem of structure 

learning

What’s out there?

How should I 

interact with it?
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What is structure learning?

How many clusters?

How many features?

Which structural form?

Which functional form?

What is structure learning?

How many rules?

What is relevant?

Which learning pattern?
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Interacting with the world

Policy p = P(a|s)

What are the inputs to the 

algorithm?
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Learning

• How should I 
represent the 
state space?

• What is the 
relevant 
action 
space?

• What should 
my policy 
be?
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What are states/actions?

A-C) Actions = motor movements

D) A = {“pick star”, “pick circle”}
A’ = {“pick blue”, “pick red”, …}

Wilson & Niv 2011, …

With what algorithm should I 

learn?
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Example: reinforcement learning

• Model-free RL:
– Vt+1(st)Vt(st) + a (rt+g Vt(st+1) - Vt(st))

• Model-based RL:
– Forward planning with a model of transitions

• Other:
– Working Memory

– Sampling from episodic memory

– Bayesian hypothesis testing

– …

The big picture

• We’re still working to discover our 

hypothesis space.

• This space is over our interactions with 

the world, not over the world itself.

• Many similar principles, with different 

constraints.
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Building blocks

1. Structuring the inputs : state spaces

2. Structuring the outputs: action spaces

3. Structuring policies: hierarchy

4. Structuring learning: learning to learn

5. How does the brain do it?

PART 1: STATE SPACES
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What is the state space?

What is the state space?

• Real life learning suffers from the curse 

of dimensionality

• Structure learning: Compressing the 

environment into a small, relevant 

state space

Hypothesis: Individuals structure the state space to represent 
only relevant information
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Simplifying the representation of 

the state space

Wilson & Niv 2012

Niv et al 2015 

Structure learning
Bayesian

• Hypothesis space:

Which of nine 

features is predictive 

of reward?

Approximations

• Naïve RL

learning for each 27 stimuli

• Feature RL

learning for each feature

• Hybrid:

feature RL, with attentional weights 

from Bayesian inference

Wilson & Niv 2012

Niv et al 2015 
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Structure learning: 

simplifying the problem 

• Real life learning suffers from the curse of 
dimensionality

• By learning the structure of the state 
space, participants simplify the state 
representation and learn more efficiently

• This is better captured by approximate, 
attentional RL process than by optimal 
Bayesian inference

latent spaces - hypotheses

• States that are relevant for predicting 

outcomes may not be observable

• Structure learning may necessitate 

creating latent state spaces
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What do animals learn during 

classical conditioning?

Slide from S Gershman

“It’s that time of year when guys randomly explode.”

Slide from S Gershman
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Some possibilities

b

a

b

a
z

b

a

Too constrained Too flexible?

Tone (a) causes 

shock (b)

Shock causes 

tone

Something else (z) causes 

both tone and shock

Slide from S Gershman

Too flexible?

b

a

.

.

.

Hypothesis: Animals assume a generative model in which (1) 
the number of latent causes is unbounded, and (2) a small 
number of latent causes is more likely a priori.Slide from S Gershman
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Conditioning 

as clustering

Slide from S Gershman

Case study: renewal

Acquisition (box A) Extinction (box B)

Test

Slide from S Gershman
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Conditioned responding is 

renewed!

(Bouton & Bolles, 1979)

The rat hasn’t unlearned its conditioned response; it 

has learned something new.

Acquisition Extinction

Slide from S Gershman

Acquisition Extinction Test

Slide from S Gershman
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How to erase a fear memory

• If extinction induces inference of a 

new latent cause, we should be able 

to prevent the return of fear by tricking 

the brain into modifying the acquisition 

latent cause.

• We can do this by extinguishing 

gradually.

Slide from S Gershman

acquisition

gradual 
extinction

gradual 
reverse

extinction

regular 
extinction

Slide from S Gershman
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Experimental design

Conditioning
(3 trials)

Extinction
(24 trials)24 hours

Long-term 
memory test

(4 trials)
24 hours

Spontaneous 
recovery
(4 trials)30 days

Slide from S Gershman

Gershman, Jones, Norman, Monfils & Niv (2013)
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State spaces

• Previous principles apply to learning 

the structure of the state space by 

clustering based on the predicted 

interactions with the environment

• Exact inference does not capture 

behavior well – approximate 

algorithms do better.

STRUCTURING ACTION SPACES
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What are the inputs to the 

algorithm?
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A) B) C)

Learning

What is a good representation 

of the action space?
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Exploration: options

(Precup & Barto; Botvinick, Niv & Barto)

SG

Learning the right option 

structure is critical

Botvinick, Niv & Barto; Solway et al, PCompBio 2014
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Learning the transition structure 

of the environment

Schapiro et al 2013

Bottlenecks as optimal subgoals

for hierarchical structure

Solway et al; Diuk et al; 

Ribas-Fernandez et al.

bottleneck

other
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Hierarchy in actions

• Options: temporal hierarchy in action space

• Learning occurs in parallel at two hierarchical 
level

s1

Qtop(s1,a)

a s2

Qtop(s2,o)

o

s3

Qopt(s3,a)

a s4

Qopt(s4,a)

a s5

Qopt(s5,a)

s6

Qtop(s6,a)

a

a

pr

rδ δ

δ δ

Hierarchical reinforcement 

learning
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HIERARCHY



11/28/2018

22

? ?
me@linux:~$ 

kill #### 

me@linux:~$ 

find –name 

cns.ppt

S1 S2 S3 S4

A1 A2 A3 A4

?
me@linux:~$ 

kill #### 

me@linux:~$ 

find –name 

cns.ppt

?

A1 A2 A3 A4

S1 S2

S1 S2

C1 C2

TS1 TS2



11/28/2018

23

Action 1 Action 2 Action 3 Action 4

C1 C2

Rule 1 Rule 2

S1 S1S2 S2

Hierarchical reinforcement 

learning: levels of abstraction
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A) B) C)

parallel state and action states
– abstract states: contexts

– abstract actions: task-sets

C

Learning Learning
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Hierarchy in RL: learning over 

multiple state/action spaces

V(s,a)  → p(s,a) = p(a|s)

V(C,TS)  → p(c,TS) = p(TS|c)

VTS(s,a)  → pTS (s,a) = p(a|s,TS)

learning task-sets

Same 

Episode

Context

Change

Context and 

Episode Change

TS1

TS2

C1 C2 C3 C4 C5 C6

TS1 TS2 TS3

Learning

• non overlapping TS

• 25 episodes of 36-54 

trials

• probabilistic 

feedback p=0.9

Collins & Koechlin, Plos Biology, 2012
Ekovich et al, in prep
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Exploring with abstract actions: 

transfer of skills

Collins & Koechlin, Plos Biology, 2012
Ekovich et al, in prep

C1 C2 C3 C4 C5 C6

TS1 TS2 TS3

Testing transfer of abstract actions

• new context, old TS episodes

• new context, new TS episodes

C1 C7 C8

TS1 TS2 TS4

Creating abstract action 

spaces, latent context

Collins & Koechlin, Plos Biology, 2012
Donoso et al, Science, 2014

Change of 

Episode

1 1 1 1

X

2 2 2 2

2

1 1 1 1

1

3 3 3 3

X

2 2 2 2

X

2 2 2 2

2
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learning task-sets with latent 

states
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Learning

• Actor task-set continuously adjusts 

according to action outcome values

Reinforcement Learning (RL)

(Sutton & Barto, 1998; O’Doherty et al., 2004)
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• Reinforcement Learning and Monitoring 

Uncertainty of external contingencies and 

behavior reliability

• Actor task-set reliability, i.e. its ability to 

predict action outcomes, is inferred online 

(Bayesian inference)

• The actor task-set is reset whenever it 

becomes unreliable

Uncertainty Monitoring (RL+UM):

Change detection

(Yu & Dayan, 2005; Behrens et al., 2007)

• Reinforcement Learning and Monitoring:
1. Uncertainty
2. Reliability of multiple alternative task-sets

• Relative reliabilities of a fixed collection of 
concurrent task-sets inferred online

• Actor task-set selected based on reliability

Multiple RL+UM
optimally tracking a fixed number of 

hypotheses

(Doya & Kawato, 2002; Samejima & Doya, 2007)
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• Reinforcement learning and 

Monitoring:

1. Uncertainty

2. Reliability of multiple 

alternative TS

3. Opportunity to create new TS

• TS creation obeys 2 constraints:

- Forward, online Bayesian inference on 

TS reliability

- Number of monitored TS is bounded

• How does the model select the actor 

task-set?

(RL+UM)+PROBE
approximately tracking an unknown 

number of hypotheses

(Collins & Koechlin, PloS Biol, 2012)

Task-sets stored in
long-term memory
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Task-sets stored in
long-term memory
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Strategies stored in
long-term memory

………..
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Task-sets stored in
long-term memory

………..
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The probed actor is

rejected!

Return to Exploitation (Rejection 

events)

Monitoring 
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Task-Sets stored in
long-term memory

………..

The actor

Behavior

The probe actor is

confirmed!

Discarded from
the monitoring buffer

Return to Exploitation 

(Confirmation events)

Monitoring 

buffer
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CRP-like clustering

• Contexts cluster together based on environment 
contingencies: stimulus-action-outcome mapping 
similarity

• Clusters index TS rules
– provide ability to generalize TS to new context

– ability to create new TS as needed

• Inference with approximate tracking of uncertainty over 
an unbounded hypothesis space: abstract task-sets

• Proposed algorithm defines discrete high-level 
exploitation/exploration periods.

• Probe model captures behavior best:
• Ability to 

– “probe” the need to create a new cluster; 

– monitor a small number of other 
hypotheses; 

– minimize default computational cost.
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Learning task-sets

• Temporal stability makes TS structure 

useful:

– by default, exploitation of current TS

– only tracks complexity when decrease in 
reliability signals a need for control

• Does structure learning happen 

without such pressure?

Hierarchical Structure learning 

occurs by default

Collins & Frank, Psych Review, 2013

Correct
Trial t 
Context = red 

Stim = triangle 

Choice At = 3 
Feedback 
Rt = 1 

Trial t+1 

2.5 sec 

A1 A2 A3 A4

A1 A2 A1 A4

Learning phase

Testing phase
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S1

S2

S3

A1

A2

A3

Computational Model

C1 Si Ai

Si2 Ai2C2

Si3 Ai3C3

Si4 Ai4C4

Si5 Ai5C5

Si6 Ai6C6

Abstracting Task-set rules

C1

Si1 Ai1C2

C3

C4

Si2 Ai2C5

C6

TS1

TS2

Latent task-set space

TS as abstract rule objects
Reverberi et al 2011

Woolgar et al 2011
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CRP prior on Task-set rules

C1

Si1 Ai1C
2C3

C4

Si2 Ai2C5

C6

TS1

TS2

C7 ?

Ability to create new Task-sets

C1

Si1 Ai1C2

C3

C4

Si2 Ai2C5

C6

TS1

TS2

Si AiC7
TSnew

Latent task-set space:

Unknown size

Collins & Frank, Psych Review, 2013
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C1 C2

TS1 TS2

A1 A2 A3 A4

TS1 TS2

A1 A3 A2 A4

C2C1 A1 A2 A3 A4

A1 A2 A1 A4

Positive transfer: In new context, faster

learning for an old TS rule

# trial

Test phase 

new contexts:

Old TS 

New TS 

Collins & Frank, Psych Review, 2013

C1 C2

TS1 TS2

A1 A2 A3 A4

A1 A2 A3 A4

A1 A2 A1 A4

C4

TS3

A1 A4

C3

N = 33

New 
Context:
Old TS
New TS
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Training phase RT switch-cost

predicts phase 2 transfer

DC – DS

Tr
a

n
sf

e
r

Color
Structure

Shape
Structure

*

**

C-S RT Switch-cost difference

Iteration # Iteration #

*

Structure learning and 

generalization in infants

Werchan et al 2015, Psych Science

Werchan et al 2016, JoN
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• Humans create 

– multiple state spaces (stimuli, contexts)

– multiple action spaces (actions, task-sets)

– at multiple hierarchical abstraction levels

• This is  a default behavior, even with no 

immediate gain

Learning structure is costly.

A1 A2 A3 A4

A1 A2 A3 A4

Cost is overriden by 

strong prior that 

structure learning is 

long-term beneficial

Collins, JoCN, 2017

C1 C2

TS1 TS2

A1 A2 A3 A4

2d

1d
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??

Action 1 Action 2 Action 3 Action 4 …

…

Action 5

✔

??

Action 1Action 2 Action 3Action 4 …

…

Action 5
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Structure learning enables 

immediate transfer of new 

learned skills

??

Action 1Action 2 Action 3Action 4 …

…

?
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What rules do we explore in a new 

context?

CTS model predicts better transfer 
for C3 →TS1 than for C3→TS2

C0 C1 C2

TS1 TS2

Cnew C2

1/4 1/4 1/4 1/4

C3: TS old = TS1

C4: TS new

N = 18

C3: TS old = TS2

C4: TS new

N = 16

Trial# per input pattern
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e
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*

C0 C1 C2

TS1 TS2

1/4 1/4 1/2

Collins & Frank, Cognition, accepted

TS1
action

TS2
action Other actions
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Subjects’ generalization 

prior is stronger for more 

popular rules

* Consistent with model’s context-
popularity prior
* Not with a trial-frequency popularity prior

Structure learning: task-sets

• TS learning is an example of hierarchical
structure learning, with:
– multiple states and action stats

– abstract, latent context space

– clustering that promotes generalization by fast, 
high-level exploration

• It exemplifies the fact that structure learning is 
a default behavior despite being costly

• It is best accounted for by approximations of 
rational non-parametric inference schemes
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Hierarchical states, internal 

actions

Badre et al, 

Neuron, 

2010
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Hierarchical states, internal 

actions
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LEARNING TO LEARN

Learning to learn
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Harlow 1949

• Monkeys and 
children

Learning the structure of a task

Bhandari & Badre, Cognition, 2017
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Learning the parameters of the 

learning algorithm

Learning rate increases when the 
environment changes faster
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Building blocks

1. Structuring the inputs : state spaces

2. Structuring the outputs: action spaces

3. Structuring policies: hierarchy

4. Structuring learning: learning to learn
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Structure learning

• Simplify → reduce curse of 

dimensionality

• Generalize → learn more flexibly

• Explore → learn more faster

• Adjust → learn more efficiently

Simplifying the problem

Badre et al 2010, Frank & Badre 2011
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Abstract rules: transfer and 
generalization

Collins & Frank 2012, 2016

Rule 1 Rule 2

Transfer

Trial# per input pattern
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Transfer
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*

Subjects (N=34)

Generalization

Trial# per input pattern
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*

Old rule

New rule

The structure learning bias

Complexifying the problem can lead to later 
simplification:

– creating more abstract, complex representations of 
the problem leads to more flexibility in their use
• latent states and more abstract actions

– structure bias:

Yu & Cohen 2009

C1 C2

TS1 TS2

A1 A2 A3 A4

A1 A2 A3 A4

Collins & Frank 2012
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Building blocks

1. Structuring the inputs : state spaces

2. Structuring the outputs: action spaces

3. Structuring policies: hierarchy

4. Structuring learning: learning to learn

5. How does the brain do it?
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STRUCTURE LEARNING IN THE 

BRAIN

Brain!

Orbitofrontal

Cortex

Medial Prefrontal

Cortex

State Space

State Space

Basal Ganglia

Task-sets,

Hierarchy,

Hypotheses…

Monitoring

Evaluating 

alternative 

hypotheses

Learning, 

goal signaling

State Space

?
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STATE SPACE REPRESENTATION

Hippocampus

Necessary for structure learning of latent states
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Pre-training lesions of 

hippocampus abolish renewal

Ji & Maren (2005)

control hippocampal
lesion

control

hippocampal
lesion

Acquisition

(A)

Extinction 

(B)

control

Test 

(A)

Pre-training lesions of 

hippocampus abolish renewal

Hippocampal lesions handicap the 

model’s ability to infer new causes

Ji & Maren (2005)

Gershman, Blei & Niv (2010), Psych Review

control hippocampal
lesion

control hippocampal
lesion
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Hippocampus represents 

temporal community structure –

latent state space 

Schapiro et al 2015

OFC

• Wilson, et al, Neuron, 2014  etc.

• Schuck et al, Neuron, 2016

All task relevant information 

decoded only in OFC
decoding accuracy 

relates to performance
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Fronto-parietal attentional 

network
• Niv et al 2015: degree of state space 

learning correlates with activity in fronto-
parietal network 

ACTION SPACE 

REPRESENTATION



11/28/2018

58

Fronto-parietal network

• Also related to action 
space space?

• Badre et al, hierarchical 
learning

• Leong et al, attentional 
switches

Task-set selection

Donoso et al, 2014
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HIERARCHICAL STRUCTURE 

LEARNING

Hierarchy, rules and abstraction 

in prefrontal cortex

1st order

2nd order

3rd order

4th order

Increasing abstraction

sensory-

motor

associations

context-

rules 

associations

Koechlin et al, Science, 2003

Badre et al, Trics, 2008 
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Hierarchical reinforcement 

learning

1st order

2nd order

3rd order

4th order

Increasing abstraction

sensory-

motor

associations

context-

rules 

associations

Koechlin et al, Science, 2003

Badre et al, 2007 

Hierarchy in PFC – BG loops
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Hierarchy in RL: learning over 

multiple state/action spaces

V(s,a)  → p(s,a) = p(a|s)

V(C,TS)  → p(c,TS) = p(TS|c)

VTS(s,a)  → pTS (s,a) = p(a|s,TS)

Stimulus-action learning

Context-TS learning

S

Striatum

A1 ... An

DA

S: stimulus (shape) A: action

BG: basal ganglia DA: Dopaminergic neurons

C

Striatum

TS1 ... TSn

DA

Collins & Frank 2013, 2016,

Collins, 2017
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Hierarchical learning network

(TS, S)

Striatum

A1 ... An

DA

C

Striatum

TS1 ... TSn

S

Collins & Frank, Psych Review, 2013

C: context (color) S: stimulus (shape)

TS: task-set A: action

BG: basal ganglia DA: Dopaminergic neurons

Neurobiologically plausible 

implementation

D
A

Striatum

TSi

Striatum

Ai
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Neural Network – Results

The network learns efficiently unsupervised

Clusters Contexts

Predicts positive, negative transfer

Test phase 

new contexts:

Old TS 

New TS 

Collins & Frank, 2013

RL network takes structure into 

account
• EEG (Collins & Frank 2016)

and fMRI (Leong et al) RPE 
signal better 
explained by 
structure learning 
than normal RL

• Evidence for pseudo-
reward prediction 
errors signals (Diuk et al, 

Ribas-Fernandez et al.)
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Medial prefrontal cortex also plays an 

important role in structure learning

• Need for control, 
monitoring 
(Donoso et al)
– task-set reliability

– task-set creation

• Hierarchical error 
representation
– Zarr & Brown, 

Alexander & Brown
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Structure learning in the brain

• Executive network is crucial

• A potential mechanism is multiple 
parallel reinforcement learning 
networks, with different state/action 
representations

• We don’t really know how it all fits 
together… Work on it!
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Summary

• We learn both the structure of the 
environment and the structure of our 
interactions with the environment

• Structure learning is short-term costly but 
long-term efficient with generalization, 
transfer and exploration gains. It occurs 
by default.

• We don’t understand well how the brain 
supports structure learning. 
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