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Central problem of structure
learning

What's out there?

How should |
interact with it?
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What is structure learninge

- . _ How many clusters?
= N | How many features?

, ' Which structural form?2

Which functional form?

nnnnnnn

How many rulese
What is relevante
Which learning pattern?
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Interacting with the world

Markov Decision Process (MDP)

S - Set of States Q
o @

A - Set of Actions
Pr(s'la,s) - Transitions ®\@ \@ \.

o - Starting State Distribution

y - Discount Factor
r(s) - Reward [orr(s,a)] ’») \
States Actions

AGENT

Policy n = P(a|s)

What are the inputs to the

algorithm?
* How should |
represent the
state space? S K
N
« Whatis the Learning
geé?i\éﬂm algoritm [ L”
space?¢ l

a7

« What should
my policy
be?
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What are states/actions?

+100 o 5, 55
0T L
e_+"> S ooo
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¥

A) C)

A-C) Actions = mofor movements | ¢ ()
T

D) »# = {"pick star”, “pick circle"}

miietemed”, .} | () 75

D) T

Wilson & Niv 2011, ..

With what algorithm should |
learne

S
L
Learning
algoritm
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Example: reinforcement learning

 Model-free RL:
— Vi (s) €Vils) + o (ry Vilsi) - Vilsy)

* Model-based RL:
— Forward planning with a model of transitions

« Other:
— Working Memory
— Sampling from episodic memory
— Bayesian hypothesis testing

The big picture

« We're still working to discover our
hypothesis space.

 This space is over our interactions with
the world, not over the world itself.

« Many similar principles, with different
constraints.



Building blocks

1. Structuring the inputs : state spaces

2. Structuring the outputs: action spaces
3. Structuring policies: hierarchy

4. Structuring learning: learning to learn

5. How does the brain do it¢

PART 1: STATE SPACES

11/28/2018
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What is the state space?

What is the state space?¢

» Redl life learning suffers from the curse
of dimensionality

» Structure learning: Compressing the
environment into a small, relevant
state space

Hypothesis: Individuals structure the state space to represent
only relevant information




11/28/2018

Simplitying the representation of
the state space

0

1 1
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* trial 10
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o
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C i . " :
30 5 10 15 20
trial (within a game)

Wilson & Niv 2012

Niv et al 2015
Structure learning
Bayesian Approximations
« Hypothesis space: ¢ Naive RL
Which of nine learning for each 27 stimuli
features is predictive Feature RL
of reward? i
learning for each feature
« Hybrid:
feature RL, with attentional weights
from Bayesian inference
T S o — woito A Nave rL IR
T ‘ ; O - L I
e Y o
= — : : : : . Hybrid !
B c SH
Wilson & NIV 20] 2 likelihood per trial .

Niv et al 2015
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Structure learning:
simplifying the problem

Real life learning suffers from the curse of
dimensionality

By learning the structure of the state
space, participants simplify the state
representation and learn more efficiently

This is better captured by approximate,
afttentional RL process than by optimal
Bayesian inference

latent spaces - hypotheses

States that are relevant for predicting
outcomes may not be observable

Structure learning may necessitate
creating latent state spaces
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What do animals learn during
classical conditioning?

L
/ / us

Slide from S Gershman

“It's that time of year when guys randomly explode.”

Slide from S Gershman

10



Some possibilities

Tone (a) causes Shock causes Something else (z) causes
shock (b) tone both tone and shock

32"@ v @ @V

Too constrained Too flexible?

J

Slide from S Gershman

Too flexible?

Hypothesis: Animals assume a generative model in which (1)
the number of latent causes is unbounded, and (2) a small
number of latent causes is more likely a priori. sige from S Gershn

nan

11/28/2018
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Conditioning
as clustering

12
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Conditioned responding is
renewed!

Experimental data
0.8 :

(Bouton & Bolles, 1979)

Acquisition  Extinction

Suppression ratio

The rat hasn't unlearned its conditioned response; it
has learned something new.

Slide from S Gershman

Acquisition Extinction Test

Slide from S Gershman

13
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How to erase a fear memory

« |f extinction induces inference of @
new latent cause, we should be able
to prevent the return of fear by tricking
the brain info modifying the acquisition
latent cause.

« We can do this by extinguishing
gradually.

Slide from S Gershman

acquisition extinction

yossa A PP PP

extinction &

77 S A

gradual B
reverse &

1774

regular .
extinction &

Slide from S Gershman
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Experimental design

Conditioning Exfinction Long-term Sponfaneous
(3 trials) 24 hours| (24frials) | 24 hours | MEMOTY fest 30d recovery
(4 trials) ays (4 trials)
5 Acquisition Extinction ~ Retention Test
5 ' :
¢ i |
D 1 ]
By i :
E I I
Trials Immed 2hrs 24hrs
Slide from S Gershman
Conditioning Extinction Long-term Sponfaneous
(3 trials) 24 hours| (24frials) | 24 hours | MEMOTY fest 30d recovery
(4 trials) ays (4 trials)
50
E’S 40
2 30
N
()
2L 20;
=
w 10r
I
2 0
'_
_10,
Standard Gradual Reverse

Gershman, Jones, Norman, Monfils & Niv (2013)
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State spaces

» Previous principles apply to learning
the structure of the state space by
clustering based on the predicted
interactions with the environment

« Exact inference does not capture
behavior well — approximate
algorithms do better.

STRUCTURING ACTION SPACES

16



What are the inputs to the
algorithm?

S K
i
Learning
ing,
algoritm

What is a good representation
of the action space?

17
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Exploration: options

SG: - -

\

l

(Precup & Barto; Botvinick, Niv & Barto)

Learning the right option
structure is critical

0 100 1
Episode

Botvinick, Niv & Barto; Solway et al, PCompBio 2014
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Learning the transition structure
of the environment

SMx-Y% H>CKWSMEXO

o
w

o
%)
N

Probability of parse

o

o
4

All trials

Schapiro et al 2013

Bottlenecks as optimal subgoals
for hierarchical structure

2700 T I
e I bottleneck
o 2500
é 2400 01‘her
& 2300

2200

Solway et al; Diuk et al;
Ribas-Fernandez et al.
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Hierarchy in actions

Sy a Sy O S¢ a
Qtop(sl'o) Qfop(SZ'o) Qtop(sé'o)
S3 a S4 a S5 a
Qopi(s?:'o) Qop1(54'0) QopT(SS'O)
<& pr

« Options: temporal hierarchy in action space

» Learning occurs in parallel at two hierarchical
level

Hierarchical reinforcement

learning
; (e
i} i
RL RL
. :
algoritm algoritm
O 1 \

20
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HIERARCHY

AOONNelBROSNALTAOAT) my

21
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S4

kill ####

me@linux:~$ me@linux:~$ - JL “_NJ L IU(_;‘J
find —name 3 1 Y }
~ - A L\

ption _;l

A4

A
l y
A TS1 R LY.
D
|
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l

Rule 1

|
DA
|

Action 1 Action 2

Hierarchical reinforcement
learning: levels of absftraction

C

]

Learning
algoritm

e

parallel state and action states

l

Rule 2

|
OF.Y
||

Action 3 Action 4

-

S

)

Learning
algoritm

— abstract states: contexts

— abstract actions: task-sets

11/28/2018
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Hierarchy in RL: learning over
mulfiple state/action spaces

V(CIS) =2 =(c.T1S) =p(TS|c)

Vislé(op) > s (s.a) = plalsiTs)

151 [1s2] 1S3
Learning
Episode * non oyerlopping TS
Context . 2§ episodes of 36-54
Change trials

» probabilistic
feedback p=0.9

Contextand
Episode Change

Collins & Koechlin, Plos Biology, 2012
Ekovich et al, in prep
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Exploring with abstract actions:
transfer of skills

. c
S
_""f ey (ts1] [1s2]  [1s3]
S 6
§ S . H — control
H B :f ~ transfer
§ 'Or open
| b S1 T2
£ 2 6
g8
9 8 .af
s 2_\\\\ ) Testing transfer of abstract actions
e me_JL,\ * new context, old TS episodes
"5 0520 25 30 + new context, new TS episodes

Trials from episode onsets

Collins & Koechlin, Plos Biology, 2012
Ekovich et al, in prep

Creating abstract action
spaces, latent context

A

1
[2]] ]3] 58
o6
]
c£0O 4
2 . //.....chance level
0 25 |
ool
o 10 20 30
c
S »4f B
£ o 1 recurrent
[
2= I open
[ |
25,
[
X
w 9
-
L] S —

10 20 30

e
Change of % 0.16
Episode [ 1203 ] g 0.12/“\
g 0.08
o
3 o004 N
T -
2 10 20 30
3
=

# Trials in episodes

Episode onsets
Collins & Koechlin, Plos Biology, 2012

Donoso et al, Science, 2014
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learning task-sets with latent

states
C ( S \
! A
Learning RL
Lk r :
algoritm algoritm
TS 1 \

Reinforcement Learning (RL)

» Actor task-set confinuously adjusts
according to action outcome values

Stimulus ~ Action Outcome

(Sutton & Barto, 1998; O'Doherty et al., 2004)

11/28/2018
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Uncertainty Monitoring (RL+UM):
Change detection

* Reinforcement Learning and Monitoring
Uncertainty of external contingencies and
behavior reliability

* Actor task-set reliability, i.e. its ability fo
predict action outcomes, is inferred online excante eliabity
(Bayesian inference)

» The actor task-set is reset whenever it
becomes unreliable Predictive M,

Selective M.| 3

Stimulus  Action OQutcome

time

(Yu & Dayan, 2005; Behrens et al., 2007)

Multiple RL+UM

optimally tracking a fixed number of
hypotheses

* Reinforcement Learning and Monitoring:
1. Uncertainty
2. Reliability of multiple alternative task-sets

« Relative reliabilities of a fixed collection of
concurrent task-sets inferred online

» Actor task-set selected based on reliability

—Stimulus  Action Outcome

time

(Doya & Kawato, 2002; Samejima & Doya, 2007)

27
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(RL+UM)+PROBE
approximately tfracking an unknown
number of hypotheses

* Reinforcement learning and
Monitoring:
1. Uncertainty
2. Reliability of multiple
alternative TS
3. Opportunity to create new TS

« TS creation obeys 2 constraints: %,
- Forward, online Bayesian inference on @
TS reliability

- Number of monitored TS is bounded

Monitoring buffer

Volatility t

* How does the model select the actor
task-sete

Stimulus  Action Outcome .
time

(Collins & Koechlin, PloS Biol, 2012)

Exploitation

The actor

Reliability
o

Task-sets stored in
long-term memory

........... SEEEEEER 88 Monitoring
buffer

Behavior

28



Exploitation

The actor
1
P
So.
©
[24
Task-sets stored in 0
long-term memory
........... N ENNNN m Monitoring
buffer
Behavior

Exploitation

The actor

Reliability
o

Task-sets stored in
long-term memory

sassssBsns E Monitoring
buffer

Less recenﬂy used

Behavior

11/28/2018
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The actor

Qv
Qv
Qv

(@]

Strategies stored in
long-term memory

........... N ENNNN m Monitoring
buffer

Behavior

Switch from Exploitation to
Exploration

The probe
ac tor

itialized to prior reliability

Reliability
o

o

Task-sets stored in
long-term memory

saaaBen . Monitoring
N O O ¢ putter

Weighted mixture

Behavior

30
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Return to Exploitation (Rejection
events)

The actor

The probed actor is

Reliability
o
OE

rejected!
Task-sets stored in
long-term memory
........... (N ENNNN B Monitoring
buffer

Behavior

Return to Exploitation
(Confirmation events)

The actor
Task-Sets stored in

The probe actor s
confirmed!
long-term memory ‘ | |

(B E N E BN . Monitoring

buffer

Discarded from

fhe monitoring buffer
Behavior

31



of responses

Correct
o v B O b =

CRP-like clustering

Contexts cluster fogether based on environment
contingencies: stimulus-action-outcome mapping
similarity

Clusters index TS rules
— provide ability to generalize TS to new contfext
— ability to create new TS as needed

Inference with approximate tracking of uncertainty over
an unbounded hypothesis space: abstract task-sets

Proposed algorithm defines discrete high-level
exploitation/exploration periods.

Probe model captures behavior best:
Ability to :
— "probe” the need to create a new cluster;

— monitor a small number of other
hypotheses; oo

— minimize default computational cost.

Optimal model

11/28/2018

32



Learning task-sets

« Temporal stability makes TS structure

useful;

— by default, exploitation of current TS

— only tracks complexity when decrease in
reliability signals a need for control

« Does structure learning happen
without such pressure?

Hierarchical Structure learning
occurs by default

\
Trial t

Context = red
Stim = triangle E%IIII
n

Choice A=3 \\&U I

L | Feedback
\ L R=1

Trial t+1

Collins & Frank, Psych Review, 2013

Learning phase
Al A2 A3 A4

Testing phase

1240

11/28/2018
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Computational Model

|

Abstracting Task-set rules
e Latent task-set space

TS, [ S |:> A ]

i =

TS as abstract rule objects
Reverberi et al 2011
Woolgar et al 2011

11/28/2018
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CRP prior on Task-set rules

S,] —> Ay ]

/

/'.“
/’ 2

Ability to create new Task-sets

TSQ S|2 |:> A ]

Latent task-set space:
Unknown size

S.] —> Ay ]
4 N\
, Sp T Ap
\ J
/ - \
Dol §§ /DA
Collins & Frank, Psych Review, 2%13 g
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TS1

TS1 T2

REE 2919

A A A A A A Al A A A
_ 100
a) 100 N =33 :82
80
80 8 Test phase
5 6o g 0 new contexts:
§ S 0 Old TS
R 40 Context: NS New TS
» old TS 20
New TS
% 5 70 i5 % 5 70 15
Trials per input pattern # TFIO|

Positive transfer: In new context, faster
learning for an old TS rule

Collins & Frank,

Psych Review,

2013

11/28/2018
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Training phase RT switch-cost
predicts phase 2 transfer

100
100 80 N . .
80 60 - 80
2 60
00 O 40 3
40 4 © 40
cC 20 &
20 O 20
= 0
% 5 0 5 %5 015
lteration # —20 Iteration #
Shape 40 Color
Structure -60 0 AC = AS structure

VAN O
<

C-S RT Switch-cost difference

v v
AL AT AL ALA AA A

Structure learning and
generalization in infants

O fule Set -4 B Looking Time C vs. | i
~4—Rule Set 3
900 @ 14
850 g _12
2 800 = 8
E (=3 @ 10
2 750 £ o
= =] E 8
S 70 8. £
g 650 g 2 6
& 600 g g 4
550 2 =,
S0 2 4 5 0

3
Learning Block ¥ .
" Consistent Inconsistent

Werchan et al 2015, Psych Science
Werchan et al 2016, JoN
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« Humans create

— multiple state spaces (stimuli, contexts)
— multiple action spaces (actions, task-sets)
— at multiple hierarchical abstraction levels

« This is a default behavior, even with no
immediate gain

Learning structure is costly.

m = . ? 17
TS1 ' & & h
£ C 47T ¢
A A A Lo A A

Cost is overriden by

strong prior that
structure learning is 0.2
long-term beneficial

As

o8} Z

Participants

0 5 10 15
iteration #

Collins, JoCN, 2017
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3
N2
]

Action 3 Action 4

ction P Action 3Action 4 Action 5 ...

39
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Phase 1 Phase 2
2

AT, W E T
® — 4 .

® —A
TS1

A — A > — A
® —A
_)A3

>A g A A A, A, 2
L ]
P=1/4

-

W]
EE
W]

1/4 1/4 1/2

_J
TS1
2 A A, A, A, 2

N

—_

Model simulations

Subjects (N=34)

1 -—
- 0
§ 08 ) 8 08 | ]
6 o (@] *
Q J O 0.6 '
206 c ~
IS b |
€ 04 5 0.4 /A Co, C1
o Co, C1 o 2

0

0 2 4 6 8 % 5

Trial# per input pattern Tricl# per input pattern
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Structure learning enables
Immediate transfer of new
learned skills

l l
we e |
Lol

Action 3Action 4 ...

1A

Action 1Action

41



What rules do we explore in a new

contexte
1/4 1/4 1/4 1/4
VAN
s
CTS model
than for C3->TS2
1/2
C2
N=18 l
1 * TS1
0
Oos
o C3: TS old = TS1
U C4 TS new First trial choice in new context
C n 0O7r
2 1 N=1é i
6 g 05 [1TS2 group
S :
o %0.4
a 0.5 ;‘0.3
C3: TS old -
C4: TS new 02
0 0.1
0 5 10

Trial# per input pattern ° 11
action action Other actions

Collins & Frank, Cognition, accepted

11/28/2018
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Subjects’ generalization
prior is stronger for more
popular rules

* Consistent with model’s context-
popularity prior
Not with a trial-frequency popularity prior

Structure learning: task-sets

» TS learning is an example of hierarchical
structure learning, with:

— multiple states and action stats
— abstract, latent context space

— clustering that promotes generalization by fast,
high-level exploration

|t exemplifies the fact that structure learning is
a default behavior despite being costly

 Itis best accounted for by approximations of
rational non-parametric inference schemes

43



Hierarchical states, internal

oc’rions

responses — 1

mAEAm

(response determined by shape)

kb

(response determined by orientation)

B example flat rule set
(no abstract relationship)
stimuli—» ' BB . BEEBn0
I -%ﬁ-
men
'
1 1 1 2 2 2 3 3 3
example hierarchical rule set
stimuli —»

(shape (orientation)

LI

"
!

-3 -8

feedback 7 (varigble
delay

. response
stimulus
. wtos

25 0-2s T
1s T correct tone
press button or
1,2,0r3 incorrect beep

Badre et al,

Neuron,
2010

11/28/2018
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Terminal Accuracy
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Max 1* Derivative
o

Max 2" Derivative
o
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Hierarchical states, internal
actions

| /
Y
A Fa
02 1 Flat Hierarchical 4
[

0 60 120 180 240 300 360 0 60 120 180 240 300 360 \

Trial Number

0.02 150

0.004 \
100 (os|c) [cs|0) (ocls)

. 4
0.002 {
o \ / <
[ 3 + i L + (n <)

foie) (Se) (co) (o) (os) (e -
.Flal DHlerarchlcal \?F‘ \ F,‘-V!o‘ (510\\0|‘ ‘krlsrl

I.‘

0.01

Learning Trial
H

— WM Update l m l Top-down bias
imuli \T Demery J

Downstream
Processing

Input gate Output gate
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LEARNING TO LEARN

Learning to learn

S
T

Learning
algoritm

A)
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THE FORMATION OF LEARNING SETS

~quality discrimination prob-
monkeys learn how to learn
sroblems with a minimum of
is this learning how to learn
roblem that we designate by
arning ses.
r form of the learning curve
learning sets become more
“he form of the learning curve
it eight discrimination prob-

of a learning set, is a highly
orderly process which can
strated as long as controls
tained over the subjects’ exp
the difficulty of the problems
jects, when they started these
had no previous laboratory |
perience. Their entire dis
learning set history was obta
study. The stimulus pair

100
z
2
&
&
)
§
g
8 70
ey
T
o
=604 57-84
w + 85412
a
50+ T T T T T
1 2 3 4 5 6
TRIALS

Fic. 7. Discrimination reversal learning curves on successive
blocks of problems.

is per cent of correct re-
versal Trials 2 to 6. Fig-
data on the formation of
ition reversal learning set
1e per cent of correct re-
sversal Trial 2 for succes-
f 14 problems. Reversal
e first trial following the
ial, ie., the initial trial
eward value of the stimuli.

Reversal Trial 2 is the m
effectiveness with which 1
forming trial leads the
abandon a reaction pattel
proved correct for 7 to 11
initiate a new reaction p
stimulus pair. On the las
nation reversal problems
were responding as effici
versal Trial 2 as they we

Harlow 1949

* Monkeys and

children

Harry F. Harrow

nuity of the learning process. The
question now left unsettled in the
oversy over hypotheses in subhu-
animals is whether or not to use
term to describe the behavior of a
es incapable of verbalization.

ain, it should be remembered that
the object-quality discrimination
ing set and the right-position dis-
nation learning set developed in a
1al and orderly manner. Only after
earning sets are formed do these

position and left-position problems
sented alternately. The remaining
blocks of problems continued the :
nate presentation of 14 object-qu
discrimination problems and 14 1
left positional discrimination prob
Figure 13 presents curves showing
per cent of correct responses on
trials on these alternate blocks of
tagonistic discriminations. The con
positional discrimination learning
curve shows progressive improve

VSES

Learning the structure of a task

Bhandari & Badre, Cognition, 2017

(@ gy 53

ANA

A G @ T
(b)

(©) Group1 CF->CF

Group2 CL->CF
Group 3 CL->CL
Group4 CF->CL

Context First (CF)

rrf

Context Last (CL

l_rrt

11
A® Gn

U

11/28/2018
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(a) 20001

1800 -

Response time (ms)
S d 2
o o o o
o o o o

800 -

600

11/28/2018

-O-CF first (same rules)
11CF -> CF (same rules)
S/CL -> CF (same rules)

Trial bin

Learning the parameters of the
learning algorithm

a
| |

.

Learning rate increases when the
environment changes faster

n

Leaming rate

PO000000000 O
DO INWW &
G822 IBREE S

1 =
08 Action - Feedback
0.6 —— Reward probabity
— Leaming rate

04 Inferred or decoded volatiity
0.2

0

0 20 40 60

140 160 180 200
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Building blocks

1. Structuring the inputs : state spaces

2. Structuring the outputs: action spaces
3. Structuring policies: hierarchy

4. Structuring learning: learning to learn

11/28/2018
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Probability Correct
o o o o

11/28/2018

Structure learning

Simplify = reduce curse of
dimensionality

Generalize - learn more flexibly
Explore - learn more faster
Adjust 2 learn more efficiently

Simplifying the problem

trial 1 trial 10

i i ‘ ) ’ : :| o “ . \‘ : \‘ \’ X \ 1 : —‘
Cc
m > fRL Hybrid SH Bﬁ/es
e " v 8 NN MR T T e T

E Cc
//7 /\/./—f (shape)  ( ) a n‘ - .
A i | | |
Flat | Hierarchical 1.8 2 3 1 3
; i 1 2 3 1 2 3
0 120 0 60 120 180 240 300 360
Trial Number

Badre et al 2010, Frank & Badre 2011
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Abstract rules: transfer and
generalization

0.8

0.6

O~

I:‘ I:I 1 Generalization s
T O[Tz 0

0.4

Old rule

Proportion Correct

0, 5
D Trial# per input pattern

(] 11 Subjects (N=34)

Rule 1 Ru*e 2

ﬁ? O O i} 1Transfer
AN

. 5
Collins & Frank 2012, 2016 Trial# perinput pattem

Transfer
Unique

Proportion Correct
o
~

The structure learning bias

Complexifying the problem can lead to later
simplification:

— creating more abstract, complex representations of
the problem leads to more flexibility in their use
+ latent states and more abstract actions
— structure bias:

— l
£
. Ts1
E
» A, A, A A, ,{? k/éj
230
RARARARARARARARA
RARAARRAARRAARRAA
ARRRARAAAARRRRAAAA
RARRRRARRAAAAAAAA

A, A, A A,
Collins & Frank 2012

Yu & Cohen 2009

11/28/2018
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Building blocks

1. Structuring the inputs : state spaces

2. Structuring the outputs: action spaces
3. Structuring policies: hierarchy

4. Structuring learning: learning to learn

5. How does the brain do ite

11/28/2018
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STRUCTURE LEARNING IN THE
BRAIN

Medial Prefrontal
Cortex

Prefrontal Cortex )
Hippocampus

Orbitofrontal
Cortex

-
Cingulate Cortex Amygdala

- Basal Ganglia

53
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STATE SPACE REPRESENTATION

Hippocampus

Necessary for structure learning of latent states

54
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Pre-training lesions of
hippocampus abolish renewal

Experimental data

Suppression ratio

0.8
Ji & Maren (2005) | IEEA

. [ 1B
0.8 : = !
04 -2V’ SV
03 Acquisition Extinction Test
' ﬂ Iﬂ (A) (B) (A)
0

control hippocampal
lesion

Pre-training lesions of
hippocampus abolish renewal

Suppression ratio

Experimental data Simulation
0.8 1
Ji & Maren (2005) | EA| 2
0 18| £o0s
6 a2
w
06
0.4 B
5 0.4
0.2 5
3 A
{] . D .
control hippocampal control hippocampal
lesion lesion

Hippocampal lesions handicap the
model’s ability to infer new causes

Gershman, Blei & Niv (2010), Psych Review
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Hippocampus represents
temporal community structure —
latent state space

Bilateral

Bilateral hippocampus MDS

© o
®ee o
@ ..
. o
o ©
® o

OFC

All task relevant information
decoded only in OFC

“™ med. orbital gyrus

Wilson, et al, Neuron, 2014 eftc.
Schuck et al, Neuron, 2016

B Pattern analysis across
hippocampus

§ 0.06 .
.E 005 —
§ 004
o003
8 0.02
=001

0

Wi
a community

o Between
community

I

ithin
x
Left

Searchlight within hippocampus

Schapiro et al 2015

decoding accuracy
relates to performance
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Fronto-parietal attentional

network

* Niv et al 2015: degree of state space
learning correlates with activity in fronto-
parietal network

ACTION SPACE
REPRESENTATION
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Fronto-parietal network

+ Also related to action

d
space space? ool MERA
+ Badre et al, hierarchical 02
learning ol
. 2 6 PMd
+ Leong et al, aftentional o *
switches 02
0.0
0 Tvae 11 W

D Hierarchical

precuneus preSMA dIPFC
prePMd
0.8 0.8
0. * * o
IPS |
x=-4 y=34 z=40
PE-1 PE2 PE3 PE-4 PE-1 PE2 PE-3 PE-4
3.09 - 4.26 Performance Epoch
. 2 .

Task-set selection
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op o]
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0.34Switch-in <& f -5 Exploit
-6~ Explore
0.1
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Donoso ef al, 2014
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HIERARCHICAL STRUCTURE

LEARNING

Hierarchy, rules and abstraction
in prefrontal cortex

sensory-
=le motor
00 associations
T
oTs 0] context-

rules
O71s.[0] associations

y

1st order

2nd orde

3d orde . vj/‘,_i/

4th order

Koechlin et al, Science, 2003
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Hierarchical reinforcement

| e G rn I n g Functional teritories
[IEimbic | [Associative | [ Sensoryl [TMotor
sensory-
@ motor 15 ord
. . S

associations oraer
i
T

rules
O71s. [0 associations

4th order

v

. . Koechlin et al, Science, 2003
Increasing abstraction  ggdre et al, 2007

Hierarchy in PFC — BG loops
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Hierarchy in RL: learning over
mulfiple state/action spaces

V(C.TS) = =n(c.T1S) =p(TS|c)

Vislé(op) > s (s.a) = plalsiTs)

Stimulus-action learning
Context-TS learning

§:fimulus shape] A: acfion Collins & Frank 2013, 2016,
: basal ganglia DA: Dopaminergic neurons .
Collins, 2017
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Hierarchical learning network

Striatum

"N

DA

C: context (color)  S:stimulus (shape)
TS: task-set A: action

BG: basal ganglia  DA: Dopaminergic neurpns Collin

Striatum

s & Frank, Psych Review, 2013

Neurobiologically plausible
implementation

Striatum

Striatum
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Clustering Experiment

Collins & Frank, 2013

Neural Network — Results

04| &

g
;

network simulations

N=53 non clustering
network simulations
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Trials per input pattern

% correct
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g = new TS
g_ - raia eation
5 |T1s1
yNeYiNelvie
©

EAA A A A A

Phase 1

trials per Input pattern

Phase 2

Test phase
new contfexts:
old TS

New TS

The network learns efficiently unsupervised

Clusters Contexts
Predicts positive, negative transfer

RL network takes structure into
account

EEG (coliins & Frank 2016)
and fMRI (teongeta) RPE
signal better
explained by
structure learning
than normal RL

Evidence for pseudo-

reward prediction
errors signals (pivketal,

Ribas-Fernandez et al.)
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Medial prefrontal cortex also plays an
important role in structure learning

* Need for control,
monitoring
(Donoso et al)

— task-set reliability
— task-set creation

MR signal changes (a.u.)
o

-0.

404812120 40 48121620
Peri-feedback time (sec.)

= =3 B g

» Hierarchical error
representation

— Zarr & Brown,
Alexander & Brown
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Structure learning in the brain

« Executive network is crucial

« A potential mechanism is multiple
parallel reinforcement learning
networks, with different state/action
representations

« We don't really know how it all fits
together... Work on it!
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Summary

« We learn both the structure of the
environment and the structure of our
interactions with the environment

» Structure learning is short-term costly but
long-term efficient with generalization,
transfer and exploration gains. It occurs
by default.

+ We don’t understand well how the brain
supports structure learning.
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